#include #include #include #include #include "function.h" #include #include #define SWITCH_ABSOLUTE 0 #define SWITCH_COMPUTED 1 #define SWITCH_BYTEOFFSET 2 #define SWITCH_SHORTOFFSET 3 struct SwitchTable { std::vector labels{}; size_t base{}; size_t defaultLabel{}; uint32_t r{}; uint32_t type{}; }; void ReadTable(Image& image, SwitchTable& table) { uint32_t pOffset; ppc_insn insn; auto* code = (uint32_t*)image.Find(table.base); ppc::Disassemble(code, table.base, insn); pOffset = insn.operands[1] << 16; ppc::Disassemble(code + 1, table.base + 4, insn); pOffset += insn.operands[2]; if (table.type == SWITCH_ABSOLUTE) { const auto* offsets = (be*)image.Find(pOffset); for (size_t i = 0; i < table.labels.size(); i++) { table.labels[i] = offsets[i]; } } else if (table.type == SWITCH_COMPUTED) { uint32_t base; uint32_t shift; const auto* offsets = (uint8_t*)image.Find(pOffset); ppc::Disassemble(code + 4, table.base + 0x10, insn); base = insn.operands[1] << 16; ppc::Disassemble(code + 5, table.base + 0x14, insn); base += insn.operands[2]; ppc::Disassemble(code + 3, table.base + 0x0C, insn); shift = insn.operands[2]; for (size_t i = 0; i < table.labels.size(); i++) { table.labels[i] = base + (offsets[i] << shift); } } else if (table.type == SWITCH_BYTEOFFSET || table.type == SWITCH_SHORTOFFSET) { if (table.type == SWITCH_BYTEOFFSET) { const auto* offsets = (uint8_t*)image.Find(pOffset); uint32_t base; ppc::Disassemble(code + 3, table.base + 0x0C, insn); base = insn.operands[1] << 16; ppc::Disassemble(code + 4, table.base + 0x10, insn); base += insn.operands[2]; for (size_t i = 0; i < table.labels.size(); i++) { table.labels[i] = base + offsets[i]; } } else if (table.type == SWITCH_SHORTOFFSET) { const auto* offsets = (be*)image.Find(pOffset); uint32_t base; ppc::Disassemble(code + 4, table.base + 0x10, insn); base = insn.operands[1] << 16; ppc::Disassemble(code + 5, table.base + 0x14, insn); base += insn.operands[2]; for (size_t i = 0; i < table.labels.size(); i++) { table.labels[i] = base + offsets[i]; } } } else { assert(false); } } void ScanTable(const uint32_t* code, size_t base, SwitchTable& table) { ppc_insn insn; uint32_t cr{ (uint32_t)-1 }; for (int i = 0; i < 32; i++) { ppc::Disassemble(&code[-i], base - (4 * i), insn); if (insn.opcode == nullptr) { continue; } if (cr == -1 && (insn.opcode->id == PPC_INST_BGT || insn.opcode->id == PPC_INST_BGTLR || insn.opcode->id == PPC_INST_BLE || insn.opcode->id == PPC_INST_BLELR)) { cr = insn.operands[0]; if (insn.opcode->operands[1] != 0) { table.defaultLabel = insn.operands[1]; } } else if (cr != -1) { if (insn.opcode->id == PPC_INST_CMPLWI && insn.operands[0] == cr) { table.r = insn.operands[1]; table.labels.resize(insn.operands[2] + 1); table.base = base; break; } } } } void MakeMask(const uint32_t* instructions, size_t count) { ppc_insn insn; for (size_t i = 0; i < count; i++) { ppc::Disassemble(&instructions[i], 0, insn); std::println("0x{:X}, // {}", std::byteswap(insn.opcode->opcode | (insn.instruction & insn.opcode->mask)), insn.opcode->name); } } void* SearchMask(const void* source, const uint32_t* compare, size_t compareCount, size_t size) { assert(size % 4 == 0); uint32_t* src = (uint32_t*)source; size_t count = size / 4; ppc_insn insn; for (size_t i = 0; i < count; i++) { size_t c = 0; for (c = 0; c < compareCount; c++) { ppc::Disassemble(&src[i + c], 0, insn); if (insn.opcode == nullptr || insn.opcode->id != compare[c]) { break; } } if (c == compareCount) { return &src[i]; } } return nullptr; } int main() { const auto file = LoadFile("private/default.xex").value(); auto image = Image::ParseImage(file.data(), file.size()).value(); std::string out; auto println = [&](std::format_string fmt, Args&&... args) { std::vformat_to(std::back_inserter(out), fmt.get(), std::make_format_args(args...)); out += '\n'; }; //for (const auto& section : image.sections) //{ // image.symbols.emplace(section.name, section.base, section.size, Symbol_Section); //} // MakeMask((uint32_t*)image.Find(0x82C40D84), 6); //auto data = "\x4D\x99\x00\x20"; //auto data2 = std::byteswap((2129)); //ppc_insn insn; //ppc_insn insn2; //ppc::Disassemble(data, 0, insn); //ppc::Disassemble(&data2, 0, insn2); //auto op = PPC_OP(insn.instruction); //auto xop = PPC_XOP(insn.instruction); auto printTable = [&](const SwitchTable& table) { println("[[switch]]"); println("base = 0x{:X}", table.base); println("r = {}", table.r); println("default = 0x{:X}", table.defaultLabel); println("labels = ["); for (const auto& label : table.labels) { println(" 0x{:X},", label); } println("]"); println(""); }; std::vector switches{}; auto insertTable = [&](size_t base, size_t defaultLabel, size_t r, size_t nLabels, uint32_t type) { auto& sw = switches.emplace_back(); sw.base = base; sw.defaultLabel = defaultLabel; sw.r = r; sw.labels.resize(nLabels); sw.type = type; }; println("# Generated by PowerAnalyse"); insertTable(0x830ADAD8, 0x830ADB28, 11, 0x1B, SWITCH_COMPUTED); insertTable(0x830AE1B0, 0x830AE21C, 11, 0x1B, SWITCH_BYTEOFFSET); insertTable(0x82CFE120, 0x82CFDE68, 11, 0x10, SWITCH_SHORTOFFSET); println("# ---- MANUAL JUMPTABLE ----"); for (auto& table : switches) { ReadTable(image, table); printTable(table); } auto scanPattern = [&](uint32_t* pattern, size_t count, size_t type) { for (const auto& section : image.sections) { if (!(section.flags & SectionFlags_Code)) { continue; } size_t base = section.base; uint8_t* data = section.data; uint8_t* dataStart = section.data; uint8_t* dataEnd = section.data + section.size; while (data < dataEnd && data != nullptr) { data = (uint8_t*)SearchMask(data, pattern, count, dataEnd - data); if (data != nullptr) { SwitchTable table{}; table.type = type; ScanTable((uint32_t*)data, base + (data - dataStart), table); // std::println("{:X} ; jmptable - {}", base + (data - dataStart), table.labels.size()); if (table.base != 0) { ReadTable(image, table); printTable(table); switches.emplace_back(std::move(table)); } data += 4; } continue; } } }; uint32_t absoluteSwitch[] = { PPC_INST_LIS, PPC_INST_ADDI, PPC_INST_RLWINM, PPC_INST_LWZX, PPC_INST_MTCTR, PPC_INST_BCTR, }; uint32_t computedSwitch[] = { PPC_INST_LIS, PPC_INST_ADDI, PPC_INST_LBZX, PPC_INST_RLWINM, PPC_INST_LIS, PPC_INST_ADDI, PPC_INST_ADD, PPC_INST_MTCTR, }; uint32_t offsetSwitch[] = { PPC_INST_LIS, PPC_INST_ADDI, PPC_INST_LBZX, PPC_INST_LIS, PPC_INST_ADDI, PPC_INST_ADD, PPC_INST_MTCTR, }; uint32_t wordOffsetSwitch[] = { PPC_INST_LIS, PPC_INST_ADDI, PPC_INST_RLWINM, PPC_INST_LHZX, PPC_INST_LIS, PPC_INST_ADDI, PPC_INST_ADD, PPC_INST_MTCTR, }; println("# ---- ABSOLUTE JUMPTABLE ----"); scanPattern(absoluteSwitch, std::size(absoluteSwitch), SWITCH_ABSOLUTE); println("# ---- COMPUTED JUMPTABLE ----"); scanPattern(computedSwitch, std::size(computedSwitch), SWITCH_COMPUTED); println("# ---- OFFSETED JUMPTABLE ----"); scanPattern(offsetSwitch, std::size(offsetSwitch), SWITCH_BYTEOFFSET); scanPattern(wordOffsetSwitch, std::size(wordOffsetSwitch), SWITCH_SHORTOFFSET); FILE* f = fopen("out/switches.toml", "w"); fwrite(out.data(), 1, out.size(), f); fclose(f); uint32_t cxxFrameHandler = std::byteswap(0x831B1C90); uint32_t cSpecificFrameHandler = std::byteswap(0x8324B3BC); image.symbols.emplace("__CxxFrameHandler", 0x831B1C90, 0x38, Symbol_Function); image.symbols.emplace("__C_specific_handler", 0x8324B3BC, 0x38, Symbol_Function); image.symbols.emplace("memcpy", 0x831B0ED0, 0x488, Symbol_Function); image.symbols.emplace("memset", 0x831B0BA0, 0xA0, Symbol_Function); image.symbols.emplace("blkmov", 0x831B1358, 0xA8, Symbol_Function); image.symbols.emplace(std::format("sub_{:X}", 0x82EF5D78), 0x82EF5D78, 0x3F8, Symbol_Function); // auto fnd = Function::Analyze(image.Find(0x82C40D58), image.size, 0x82C40D58); std::vector functions; auto& pdata = *image.Find(".pdata"); size_t count = pdata.size / sizeof(IMAGE_CE_RUNTIME_FUNCTION); auto* pf = (IMAGE_CE_RUNTIME_FUNCTION*)pdata.data; for (size_t i = 0; i < count; i++) { auto fn = pf[i]; fn.BeginAddress = std::byteswap(fn.BeginAddress); fn.Data = std::byteswap(fn.Data); auto& f = functions.emplace_back(); f.base = fn.BeginAddress; f.size = fn.FunctionLength * 4; if (f.base == 0x82BD7420) { __debugbreak(); } image.symbols.emplace(std::format("sub_{:X}", f.base), f.base, f.size, Symbol_Function); } auto sym = image.symbols.find(0x82BD7420); std::vector missingFunctions; for (const auto& section : image.sections) { if (!(section.flags & SectionFlags_Code)) { continue; } size_t base = section.base; uint8_t* data = section.data; uint8_t* dataEnd = section.data + section.size; const Symbol* prevSymbol = nullptr; while (data < dataEnd) { if (*(uint32_t*)data == 0) { data += 4; base += 4; continue; } if (*(uint32_t*)data == cxxFrameHandler || *(uint32_t*)data == cSpecificFrameHandler) { data += 8; base += 8; continue; } auto fnSymbol = image.symbols.find(base); if (fnSymbol != image.symbols.end() && fnSymbol->type == Symbol_Function) { assert(fnSymbol->address == base); prevSymbol = &*fnSymbol; base += fnSymbol->size; data += fnSymbol->size; } else { auto& missingFn = missingFunctions.emplace_back(Function::Analyze(data, dataEnd - data, base)); base += missingFn.size; data += missingFn.size; std::println("sub_{:X}", missingFn.base); } } } //ppc_insn insn; //uint8_t c[4] = { 0x10, 0x00, 0x59, 0xC3 }; //ppc::Disassemble(c, 0x831D6C64, insn); //std::println("{:20}{}", insn.opcode->name, insn.op_str); const auto entrySymbol = image.symbols.find(image.entry_point); assert(entrySymbol != image.symbols.end()); const auto entrySize = entrySymbol->size; image.symbols.erase(entrySymbol); image.symbols.emplace("_start", image.entry_point, entrySize, Symbol_Function); std::println("FUNCTIONS"); for (const auto& fn : functions) { std::println("\tsub_{:X}", fn.base); } std::println(""); std::println("SECTIONS"); for (const auto& section : image.sections) { std::printf("Section %.8s\n", section.name.c_str()); std::printf("\t%X-%X\n", section.base, section.base + section.size); } std::println(""); return 0; }