#include "function.h" #include #include #include #include #include size_t Function::SearchBlock(size_t address) const { if (address < base) { return -1; } for (size_t i = 0; i < blocks.size(); i++) { const auto& block = blocks[i]; const auto begin = base + block.base; const auto end = begin + block.size; if (begin != end) { if (address >= begin && address < end) { return i; } } else // fresh block { if (address == begin) { return i; } } } return -1; } Function Function::Analyze(const void* code, size_t size, size_t base) { Function fn{ base, 0 }; auto& blocks = fn.blocks; blocks.reserve(8); blocks.emplace_back(); const auto* data = (uint32_t*)code; const auto* dataStart = data; const auto* dataEnd = (uint32_t*)((uint8_t*)code + size); std::vector blockStack{}; blockStack.reserve(32); blockStack.emplace_back(); #define RESTORE_DATA() if (!blockStack.empty()) data = (dataStart + ((blocks[blockStack.back()].base + blocks[blockStack.back()].size) / sizeof(*data))) - 1; // continue adds one // TODO: Branch fallthrough for (; data <= dataEnd ; ++data) { const auto addr = base + ((data - dataStart) * sizeof(*data)); if (blockStack.empty()) { break; // it's hideover } auto& curBlock = blocks[blockStack.back()]; DEBUG(const auto blockBase = curBlock.base); const auto instruction = std::byteswap(*data); const auto op = PPC_OP(instruction); const auto xop = PPC_XOP(instruction); const auto isLink = PPC_BL(instruction); // call ppc_insn insn; ppc::Disassemble(data, addr, insn); // Sanity check assert(addr == base + curBlock.base + curBlock.size); if (curBlock.projectedSize != -1 && curBlock.size >= curBlock.projectedSize) // fallthrough { blockStack.pop_back(); RESTORE_DATA(); continue; } curBlock.size += 4; if (op == PPC_OP_BC) // conditional branches all originate from one opcode, thanks RISC { if (isLink) // just a conditional call, nothing to see here { continue; } // TODO: carry projections over to false curBlock.projectedSize = -1; blockStack.pop_back(); // TODO: Handle absolute branches? assert(!PPC_BA(instruction)); const auto branchDest = addr + PPC_BD(instruction); // true/false paths // left block: false case // right block: true case const auto lBase = (addr - base) + 4; const auto rBase = (addr + PPC_BD(instruction)) - base; // these will be -1 if it's our first time seeing these blocks auto lBlock = fn.SearchBlock(base + lBase); if (lBlock == -1) { blocks.emplace_back(lBase, 0).projectedSize = rBase - lBase; lBlock = blocks.size() - 1; // push this first, this gets overriden by the true case as it'd be further away DEBUG(blocks[lBlock].parent = blockBase); blockStack.emplace_back(lBlock); } auto rBlock = fn.SearchBlock(base + rBase); if (rBlock == -1) { blocks.emplace_back(branchDest - base, 0); rBlock = blocks.size() - 1; DEBUG(blocks[rBlock].parent = blockBase); blockStack.emplace_back(rBlock); } RESTORE_DATA(); } else if (op == PPC_OP_B || instruction == 0 || (op == PPC_OP_CTR && (xop == 16 || xop == 528))) // b, blr, end padding { if (!isLink) { blockStack.pop_back(); if (op == PPC_OP_B) { assert(!PPC_BA(instruction)); const auto branchDest = addr + PPC_BI(instruction); const auto branchBase = branchDest - base; const auto branchBlock = fn.SearchBlock(branchDest); if (branchDest < base) { // Branches before base are just tail calls, no need to chase after those RESTORE_DATA(); continue; } // carry over our projection if blocks are next to each other const auto isContinuous = branchBase == curBlock.base + curBlock.size; auto sizeProjection = (size_t)-1; if (curBlock.projectedSize != -1 && isContinuous) { sizeProjection = curBlock.projectedSize - curBlock.size; } if (branchBlock == -1) { blocks.emplace_back(branchBase, 0, sizeProjection); blockStack.emplace_back(blocks.size() - 1); DEBUG(blocks.back().parent = blockBase); RESTORE_DATA(); continue; } } else if (op == PPC_OP_CTR) { // 5th bit of BO tells cpu to ignore the counter, which is a blr/bctr otherwise it's conditional const auto conditional = !(PPC_BO(instruction) & 0x10); if (conditional) { // right block's just going to return const auto lBase = (addr - base) + 4; auto lBlock = fn.SearchBlock(lBase); if (lBlock == -1) { blocks.emplace_back(lBase, 0); lBlock = blocks.size() - 1; DEBUG(blocks[lBlock].parent = blockBase); blockStack.emplace_back(lBlock); RESTORE_DATA(); continue; } } } RESTORE_DATA(); } } else if (insn.opcode == nullptr) { blockStack.pop_back(); RESTORE_DATA(); } } // Sort and invalidate discontinuous blocks if (blocks.size() > 1) { std::ranges::sort(blocks, [](const Block& a, const Block& b) { return a.base < b.base; }); size_t discontinuity = -1; for (size_t i = 0; i < blocks.size() - 1; i++) { if (blocks[i].base + blocks[i].size >= blocks[i + 1].base) { continue; } discontinuity = i + 1; break; } if (discontinuity != -1) { blocks.erase(blocks.begin() + discontinuity, blocks.end()); } } fn.size = 0; for (const auto& block : blocks) { // pick the block furthest away fn.size = std::max(fn.size, block.base + block.size); } return fn; }