The Spicy Chef 49c5e3b4f5
Added handling of normal compression for patching xex files (#126)
* Added handling of normal compression for patching xex files

* Added normal compression handling to XenonAnalyse

* Swap calloc for unique_ptr, tidied up code layout
2025-04-12 13:05:53 +03:00

351 lines
12 KiB
C++

#include "xex.h"
#include "image.h"
#include <cassert>
#include <cstring>
#include <vector>
#include <unordered_map>
#include <aes.hpp>
#include <TinySHA1.hpp>
#include <xex_patcher.h>
#define STRINGIFY(X) #X
#define XE_EXPORT(MODULE, ORDINAL, NAME, TYPE) { (ORDINAL), "__imp__" STRINGIFY(NAME) }
#ifndef _WIN32
typedef struct _IMAGE_DOS_HEADER {
uint16_t e_magic;
uint16_t e_cblp;
uint16_t e_cp;
uint16_t e_crlc;
uint16_t e_cparhdr;
uint16_t e_minalloc;
uint16_t e_maxalloc;
uint16_t e_ss;
uint16_t e_sp;
uint16_t e_csum;
uint16_t e_ip;
uint16_t e_cs;
uint16_t e_lfarlc;
uint16_t e_ovno;
uint16_t e_res[4];
uint16_t e_oemid;
uint16_t e_oeminfo;
uint16_t e_res2[10];
uint32_t e_lfanew;
} IMAGE_DOS_HEADER, * PIMAGE_DOS_HEADER;
typedef struct _IMAGE_FILE_HEADER {
uint16_t Machine;
uint16_t NumberOfSections;
uint32_t TimeDateStamp;
uint32_t PointerToSymbolTable;
uint32_t NumberOfSymbols;
uint16_t SizeOfOptionalHeader;
uint16_t Characteristics;
} IMAGE_FILE_HEADER, * PIMAGE_FILE_HEADER;
typedef struct _IMAGE_DATA_DIRECTORY {
uint32_t VirtualAddress;
uint32_t Size;
} IMAGE_DATA_DIRECTORY, * PIMAGE_DATA_DIRECTORY;
#define IMAGE_NUMBEROF_DIRECTORY_ENTRIES 16
typedef struct _IMAGE_OPTIONAL_HEADER {
uint16_t Magic;
uint8_t MajorLinkerVersion;
uint8_t MinorLinkerVersion;
uint32_t SizeOfCode;
uint32_t SizeOfInitializedData;
uint32_t SizeOfUninitializedData;
uint32_t AddressOfEntryPoint;
uint32_t BaseOfCode;
uint32_t BaseOfData;
uint32_t ImageBase;
uint32_t SectionAlignment;
uint32_t FileAlignment;
uint16_t MajorOperatingSystemVersion;
uint16_t MinorOperatingSystemVersion;
uint16_t MajorImageVersion;
uint16_t MinorImageVersion;
uint16_t MajorSubsystemVersion;
uint16_t MinorSubsystemVersion;
uint32_t Win32VersionValue;
uint32_t SizeOfImage;
uint32_t SizeOfHeaders;
uint32_t CheckSum;
uint16_t Subsystem;
uint16_t DllCharacteristics;
uint32_t SizeOfStackReserve;
uint32_t SizeOfStackCommit;
uint32_t SizeOfHeapReserve;
uint32_t SizeOfHeapCommit;
uint32_t LoaderFlags;
uint32_t NumberOfRvaAndSizes;
IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];
} IMAGE_OPTIONAL_HEADER32, * PIMAGE_OPTIONAL_HEADER32;
typedef struct _IMAGE_NT_HEADERS {
uint32_t Signature;
IMAGE_FILE_HEADER FileHeader;
IMAGE_OPTIONAL_HEADER32 OptionalHeader;
} IMAGE_NT_HEADERS32, * PIMAGE_NT_HEADERS32;
#define IMAGE_SIZEOF_SHORT_NAME 8
typedef struct _IMAGE_SECTION_HEADER {
uint8_t Name[IMAGE_SIZEOF_SHORT_NAME];
union {
uint32_t PhysicalAddress;
uint32_t VirtualSize;
} Misc;
uint32_t VirtualAddress;
uint32_t SizeOfRawData;
uint32_t PointerToRawData;
uint32_t PointerToRelocations;
uint32_t PointerToLinenumbers;
uint16_t NumberOfRelocations;
uint16_t NumberOfLinenumbers;
uint32_t Characteristics;
} IMAGE_SECTION_HEADER, * PIMAGE_SECTION_HEADER;
#define IMAGE_SCN_CNT_CODE 0x00000020
#endif
std::unordered_map<size_t, const char*> XamExports =
{
#include "xbox/xam_table.inc"
};
std::unordered_map<size_t, const char*> XboxKernelExports =
{
#include "xbox/xboxkrnl_table.inc"
};
Image Xex2LoadImage(const uint8_t* data, size_t dataSize)
{
auto* header = reinterpret_cast<const Xex2Header*>(data);
auto* security = reinterpret_cast<const Xex2SecurityInfo*>(data + header->securityOffset);
const auto* fileFormatInfo = reinterpret_cast<const Xex2OptFileFormatInfo*>(getOptHeaderPtr(data, XEX_HEADER_FILE_FORMAT_INFO));
Image image{};
std::unique_ptr<uint8_t[]> result{};
size_t imageSize = security->imageSize;
// Decompress image
if (fileFormatInfo != nullptr)
{
assert(fileFormatInfo->compressionType <= XEX_COMPRESSION_NORMAL);
std::unique_ptr<uint8_t[]> decryptedData;
const uint8_t* srcData = nullptr;
if (fileFormatInfo->encryptionType == XEX_ENCRYPTION_NORMAL)
{
constexpr uint32_t KeySize = 16;
AES_ctx aesContext;
uint8_t decryptedKey[KeySize];
memcpy(decryptedKey, security->aesKey, KeySize);
AES_init_ctx_iv(&aesContext, Xex2RetailKey, AESBlankIV);
AES_CBC_decrypt_buffer(&aesContext, decryptedKey, KeySize);
decryptedData = std::make_unique<uint8_t[]>(dataSize - header->headerSize);
memcpy(decryptedData.get(), data + header->headerSize, dataSize - header->headerSize);
AES_init_ctx_iv(&aesContext, decryptedKey, AESBlankIV);
AES_CBC_decrypt_buffer(&aesContext, decryptedData.get(), dataSize - header->headerSize);
srcData = decryptedData.get();
}
else
{
srcData = data + header->headerSize;
}
if (fileFormatInfo->compressionType == XEX_COMPRESSION_NONE)
{
result = std::make_unique<uint8_t[]>(imageSize);
memcpy(result.get(), srcData, imageSize);
}
else if (fileFormatInfo->compressionType == XEX_COMPRESSION_BASIC)
{
auto* blocks = reinterpret_cast<const Xex2FileBasicCompressionBlock*>(fileFormatInfo + 1);
const size_t numBlocks = (fileFormatInfo->infoSize / sizeof(Xex2FileBasicCompressionInfo)) - 1;
imageSize = 0;
for (size_t i = 0; i < numBlocks; i++)
{
imageSize += blocks[i].dataSize + blocks[i].zeroSize;
}
result = std::make_unique<uint8_t[]>(imageSize);
auto* destData = result.get();
for (size_t i = 0; i < numBlocks; i++)
{
memcpy(destData, srcData, blocks[i].dataSize);
srcData += blocks[i].dataSize;
destData += blocks[i].dataSize;
memset(destData, 0, blocks[i].zeroSize);
destData += blocks[i].zeroSize;
}
}
else if (fileFormatInfo->compressionType == XEX_COMPRESSION_NORMAL)
{
result = std::make_unique<uint8_t[]>(imageSize);
auto* destData = result.get();
const Xex2CompressedBlockInfo* blocks = &((const Xex2FileNormalCompressionInfo*)(fileFormatInfo + 1))->firstBlock;
const uint32_t headerSize = header->headerSize.get();
const uint32_t exeLength = dataSize - headerSize;
const uint8_t* exeBuffer = srcData;
auto compressBuffer = std::make_unique<uint8_t[]>(exeLength);
const uint8_t* p = NULL;
uint8_t* d = NULL;
sha1::SHA1 s;
p = exeBuffer;
d = compressBuffer.get();
uint8_t blockCalcedDigest[0x14];
while (blocks->blockSize)
{
const uint8_t* pNext = p + blocks->blockSize;
const auto* nextBlock = (const Xex2CompressedBlockInfo*)p;
s.reset();
s.processBytes(p, blocks->blockSize);
s.finalize(blockCalcedDigest);
if (memcmp(blockCalcedDigest, blocks->blockHash, 0x14) != 0)
return {};
p += 4;
p += 20;
while (true)
{
const size_t chunkSize = (p[0] << 8) | p[1];
p += 2;
if (!chunkSize)
break;
memcpy(d, p, chunkSize);
p += chunkSize;
d += chunkSize;
}
p = pNext;
blocks = nextBlock;
}
int resultCode = 0;
uint32_t uncompressedSize = security->imageSize;
uint8_t* buffer = destData;
resultCode = lzxDecompress(compressBuffer.get(), d - compressBuffer.get(), buffer, uncompressedSize, ((const Xex2FileNormalCompressionInfo*)(fileFormatInfo + 1))->windowSize, nullptr, 0);
if (resultCode)
return {};
}
}
image.data = std::move(result);
image.size = security->imageSize;
// Map image
const auto* dosHeader = reinterpret_cast<IMAGE_DOS_HEADER*>(image.data.get());
const auto* ntHeaders = reinterpret_cast<IMAGE_NT_HEADERS32*>(image.data.get() + dosHeader->e_lfanew);
image.base = security->loadAddress;
const void* xex2BaseAddressPtr = getOptHeaderPtr(data, XEX_HEADER_IMAGE_BASE_ADDRESS);
if (xex2BaseAddressPtr != nullptr)
{
image.base = *reinterpret_cast<const be<uint32_t>*>(xex2BaseAddressPtr);
}
const void* xex2EntryPointPtr = getOptHeaderPtr(data, XEX_HEADER_ENTRY_POINT);
if (xex2EntryPointPtr != nullptr)
{
image.entry_point = *reinterpret_cast<const be<uint32_t>*>(xex2EntryPointPtr);
}
const auto numSections = ntHeaders->FileHeader.NumberOfSections;
const auto* sections = reinterpret_cast<const IMAGE_SECTION_HEADER*>(ntHeaders + 1);
for (size_t i = 0; i < numSections; i++)
{
const auto& section = sections[i];
uint8_t flags{};
if (section.Characteristics & IMAGE_SCN_CNT_CODE)
{
flags |= SectionFlags_Code;
}
image.Map(reinterpret_cast<const char*>(section.Name), section.VirtualAddress,
section.Misc.VirtualSize, flags, image.data.get() + section.VirtualAddress);
}
auto* imports = reinterpret_cast<const Xex2ImportHeader*>(getOptHeaderPtr(data, XEX_HEADER_IMPORT_LIBRARIES));
if (imports != nullptr)
{
std::vector<std::string_view> stringTable;
auto* pStrTable = reinterpret_cast<const char*>(imports + 1);
size_t paddedStringOffset = 0;
for (size_t i = 0; i < imports->numImports; i++)
{
stringTable.emplace_back(pStrTable + paddedStringOffset);
// pad the offset to the next multiple of 4
paddedStringOffset += ((stringTable.back().length() + 1) + 3) & ~3;
}
auto* library = (Xex2ImportLibrary*)(((char*)imports) + sizeof(Xex2ImportHeader) + imports->sizeOfStringTable);
for (size_t i = 0; i < stringTable.size(); i++)
{
auto* descriptors = (Xex2ImportDescriptor*)(library + 1);
static std::unordered_map<size_t, const char*> DummyExports;
const std::unordered_map<size_t, const char*>* names = &DummyExports;
if (stringTable[i] == "xam.xex")
{
names = &XamExports;
}
else if (stringTable[i] == "xboxkrnl.exe")
{
names = &XboxKernelExports;
}
for (size_t im = 0; im < library->numberOfImports; im++)
{
auto originalThunk = (Xex2ThunkData*)image.Find(descriptors[im].firstThunk);
auto originalData = originalThunk;
originalData->data = ByteSwap(originalData->data);
if (originalData->originalData.type != 0)
{
uint32_t thunk[4] = { 0x00000060, 0x00000060, 0x00000060, 0x2000804E };
auto name = names->find(originalData->originalData.ordinal);
if (name != names->end())
{
image.symbols.insert({ name->second, descriptors[im].firstThunk, sizeof(thunk), Symbol_Function });
}
memcpy(originalThunk, thunk, sizeof(thunk));
}
}
library = (Xex2ImportLibrary*)((char*)(library + 1) + library->numberOfImports * sizeof(Xex2ImportDescriptor));
}
}
return image;
}