XenonRecomp/thirdparty/capstone/arch/AArch64/AArch64AddressingModes.h
2024-09-07 18:15:29 +06:00

1000 lines
26 KiB
C++

/* Capstone Disassembly Engine, http://www.capstone-engine.org */
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013-2022, */
/* Rot127 <unisono@quyllur.org> 2022-2023 */
/* Automatically translated source file from LLVM. */
/* LLVM-commit: <commit> */
/* LLVM-tag: <tag> */
/* Only small edits allowed. */
/* For multiple similar edits, please create a Patch for the translator. */
/* Capstone's C++ file translator: */
/* https://github.com/capstone-engine/capstone/tree/next/suite/auto-sync */
//===- AArch64AddressingModes.h - AArch64 Addressing Modes ------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the AArch64 addressing mode implementation stuff.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H
#define LLVM_LIB_TARGET_AARCH64_MCTARGETDESC_AARCH64ADDRESSINGMODES_H
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <capstone/platform.h>
#include "../../MathExtras.h"
#include <assert.h>
#include "../../MathExtras.h"
#define CONCAT(a, b) CONCAT_(a, b)
#define CONCAT_(a, b) a##_##b
/// AArch64_AM - AArch64 Addressing Mode Stuff
// CS namespace begin: AArch64_AM
//===----------------------------------------------------------------------===//
// Shifts
//
typedef enum ShiftExtendType {
AArch64_AM_InvalidShiftExtend = -1,
AArch64_AM_LSL = 0,
AArch64_AM_LSR,
AArch64_AM_ASR,
AArch64_AM_ROR,
AArch64_AM_MSL,
AArch64_AM_UXTB,
AArch64_AM_UXTH,
AArch64_AM_UXTW,
AArch64_AM_UXTX,
AArch64_AM_SXTB,
AArch64_AM_SXTH,
AArch64_AM_SXTW,
AArch64_AM_SXTX,
} AArch64_AM_ShiftExtendType;
/// getShiftName - Get the string encoding for the shift type.
static inline const char *
AArch64_AM_getShiftExtendName(AArch64_AM_ShiftExtendType ST)
{
switch (ST) {
default:
assert(0 && "unhandled shift type!");
case AArch64_AM_LSL:
return "lsl";
case AArch64_AM_LSR:
return "lsr";
case AArch64_AM_ASR:
return "asr";
case AArch64_AM_ROR:
return "ror";
case AArch64_AM_MSL:
return "msl";
case AArch64_AM_UXTB:
return "uxtb";
case AArch64_AM_UXTH:
return "uxth";
case AArch64_AM_UXTW:
return "uxtw";
case AArch64_AM_UXTX:
return "uxtx";
case AArch64_AM_SXTB:
return "sxtb";
case AArch64_AM_SXTH:
return "sxth";
case AArch64_AM_SXTW:
return "sxtw";
case AArch64_AM_SXTX:
return "sxtx";
}
return NULL;
}
/// getShiftType - Extract the shift type.
static inline AArch64_AM_ShiftExtendType AArch64_AM_getShiftType(unsigned Imm)
{
switch ((Imm >> 6) & 0x7) {
default:
return AArch64_AM_InvalidShiftExtend;
case 0:
return AArch64_AM_LSL;
case 1:
return AArch64_AM_LSR;
case 2:
return AArch64_AM_ASR;
case 3:
return AArch64_AM_ROR;
case 4:
return AArch64_AM_MSL;
}
}
/// getShiftValue - Extract the shift value.
static inline unsigned AArch64_AM_getShiftValue(unsigned Imm)
{
return Imm & 0x3f;
}
/// getShifterImm - Encode the shift type and amount:
/// imm: 6-bit shift amount
/// shifter: 000 ==> lsl
/// 001 ==> lsr
/// 010 ==> asr
/// 011 ==> ror
/// 100 ==> msl
/// {8-6} = shifter
/// {5-0} = imm
static inline unsigned AArch64_AM_getShifterImm(AArch64_AM_ShiftExtendType ST,
unsigned Imm)
{
unsigned STEnc = 0;
switch (ST) {
default:
assert(0 && "Invalid shift requested");
case AArch64_AM_LSL:
STEnc = 0;
break;
case AArch64_AM_LSR:
STEnc = 1;
break;
case AArch64_AM_ASR:
STEnc = 2;
break;
case AArch64_AM_ROR:
STEnc = 3;
break;
case AArch64_AM_MSL:
STEnc = 4;
break;
}
return (STEnc << 6) | (Imm & 0x3f);
}
//===----------------------------------------------------------------------===//
// Extends
//
/// getArithShiftValue - get the arithmetic shift value.
static inline unsigned AArch64_AM_getArithShiftValue(unsigned Imm)
{
return Imm & 0x7;
}
/// getExtendType - Extract the extend type for operands of arithmetic ops.
static inline AArch64_AM_ShiftExtendType AArch64_AM_getExtendType(unsigned Imm)
{
switch (Imm) {
default:
assert(0 && "Compiler bug!");
case 0:
return AArch64_AM_UXTB;
case 1:
return AArch64_AM_UXTH;
case 2:
return AArch64_AM_UXTW;
case 3:
return AArch64_AM_UXTX;
case 4:
return AArch64_AM_SXTB;
case 5:
return AArch64_AM_SXTH;
case 6:
return AArch64_AM_SXTW;
case 7:
return AArch64_AM_SXTX;
}
}
static inline AArch64_AM_ShiftExtendType
AArch64_AM_getArithExtendType(unsigned Imm)
{
return AArch64_AM_getExtendType((Imm >> 3) & 0x7);
}
/// Mapping from extend bits to required operation:
/// shifter: 000 ==> uxtb
/// 001 ==> uxth
/// 010 ==> uxtw
/// 011 ==> uxtx
/// 100 ==> sxtb
/// 101 ==> sxth
/// 110 ==> sxtw
/// 111 ==> sxtx
static inline unsigned
AArch64_AM_getExtendEncoding(AArch64_AM_ShiftExtendType ET)
{
switch (ET) {
default:
assert(0 && "Invalid extend type requested");
case AArch64_AM_UXTB:
return 0;
break;
case AArch64_AM_UXTH:
return 1;
break;
case AArch64_AM_UXTW:
return 2;
break;
case AArch64_AM_UXTX:
return 3;
break;
case AArch64_AM_SXTB:
return 4;
break;
case AArch64_AM_SXTH:
return 5;
break;
case AArch64_AM_SXTW:
return 6;
break;
case AArch64_AM_SXTX:
return 7;
break;
}
}
/// getArithExtendImm - Encode the extend type and shift amount for an
/// arithmetic instruction:
/// imm: 3-bit extend amount
/// {5-3} = shifter
/// {2-0} = imm3
static inline unsigned
AArch64_AM_getArithExtendImm(AArch64_AM_ShiftExtendType ET, unsigned Imm)
{
return (AArch64_AM_getExtendEncoding(ET) << 3) | (Imm & 0x7);
}
/// getMemDoShift - Extract the "do shift" flag value for load/store
/// instructions.
static inline bool AArch64_AM_getMemDoShift(unsigned Imm)
{
return (Imm & 0x1) != 0;
}
/// getExtendType - Extract the extend type for the offset operand of
/// loads/stores.
static inline AArch64_AM_ShiftExtendType
AArch64_AM_getMemExtendType(unsigned Imm)
{
return AArch64_AM_getExtendType((Imm >> 1) & 0x7);
}
/// getExtendImm - Encode the extend type and amount for a load/store inst:
/// doshift: should the offset be scaled by the access size
/// shifter: 000 ==> uxtb
/// 001 ==> uxth
/// 010 ==> uxtw
/// 011 ==> uxtx
/// 100 ==> sxtb
/// 101 ==> sxth
/// 110 ==> sxtw
/// 111 ==> sxtx
/// {3-1} = shifter
/// {0} = doshift
static inline unsigned AArch64_AM_getMemExtendImm(AArch64_AM_ShiftExtendType ET,
bool DoShift)
{
return (AArch64_AM_getExtendEncoding(ET) << 1) | (unsigned)DoShift;
}
static inline uint64_t AArch64_AM_ror(uint64_t elt, unsigned size)
{
return ((elt & 1) << (size - 1)) | (elt >> 1);
}
/// processLogicalImmediate - Determine if an immediate value can be encoded
/// as the immediate operand of a logical instruction for the given register
/// size. If so, return true with "encoding" set to the encoded value in
/// the form N:immr:imms.
static inline bool AArch64_AM_processLogicalImmediate(uint64_t Imm,
unsigned RegSize,
uint64_t *Encoding)
{
if (Imm == 0ULL || Imm == ~0ULL ||
(RegSize != 64 &&
(Imm >> RegSize != 0 || Imm == (~0ULL >> (64 - RegSize)))))
return false;
// First, determine the element size.
unsigned Size = RegSize;
do {
Size /= 2;
uint64_t Mask = (1ULL << Size) - 1;
if ((Imm & Mask) != ((Imm >> Size) & Mask)) {
Size *= 2;
break;
}
} while (Size > 2);
// Second, determine the rotation to make the element be: 0^m 1^n.
uint32_t CTO, I;
uint64_t Mask = ((uint64_t)-1LL) >> (64 - Size);
Imm &= Mask;
if (isShiftedMask_64(Imm)) {
I = CountTrailingZeros_64(Imm);
CTO = CountTrailingOnes_64(Imm >> I);
} else {
Imm |= ~Mask;
if (!isShiftedMask_64(~Imm))
return false;
unsigned CLO = CountLeadingOnes_64(Imm);
I = 64 - CLO;
CTO = CLO + CountTrailingOnes_64(Imm) - (64 - Size);
}
// Encode in Immr the number of RORs it would take to get *from* 0^m 1^n
// to our target value, where I is the number of RORs to go the opposite
// direction.
unsigned Immr = (Size - I) & (Size - 1);
// If size has a 1 in the n'th bit, create a value that has zeroes in
// bits [0, n] and ones above that.
uint64_t NImms = ~(Size - 1) << 1;
// Or the CTO value into the low bits, which must be below the Nth bit
// bit mentioned above.
NImms |= (CTO - 1);
// Extract the seventh bit and toggle it to create the N field.
unsigned N = ((NImms >> 6) & 1) ^ 1;
*Encoding = (N << 12) | (Immr << 6) | (NImms & 0x3f);
return true;
}
/// isLogicalImmediate - Return true if the immediate is valid for a logical
/// immediate instruction of the given register size. Return false otherwise.
static inline bool AArch64_AM_isLogicalImmediate(uint64_t imm, unsigned regSize)
{
uint64_t encoding = 0;
return AArch64_AM_processLogicalImmediate(imm, regSize, &encoding);
}
/// encodeLogicalImmediate - Return the encoded immediate value for a logical
/// immediate instruction of the given register size.
static inline uint64_t AArch64_AM_encodeLogicalImmediate(uint64_t imm,
unsigned regSize)
{
uint64_t encoding = 0;
bool res = AArch64_AM_processLogicalImmediate(imm, regSize, &encoding);
(void)res;
return encoding;
}
/// decodeLogicalImmediate - Decode a logical immediate value in the form
/// "N:immr:imms" (where the immr and imms fields are each 6 bits) into the
/// integer value it represents with regSize bits.
static inline uint64_t AArch64_AM_decodeLogicalImmediate(uint64_t val,
unsigned regSize)
{
// Extract the N, imms, and immr fields.
unsigned N = (val >> 12) & 1;
unsigned immr = (val >> 6) & 0x3f;
unsigned imms = val & 0x3f;
int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
assert(len >= 1);
unsigned size = (1 << len);
unsigned R = immr & (size - 1);
unsigned S = imms & (size - 1);
uint64_t pattern = (1ULL << (S + 1)) - 1;
for (unsigned i = 0; i < R; ++i)
pattern = AArch64_AM_ror(pattern, size);
// Replicate the pattern to fill the regSize.
while (size != regSize) {
pattern |= (pattern << size);
size *= 2;
}
return pattern;
}
/// isValidDecodeLogicalImmediate - Check to see if the logical immediate value
/// in the form "N:immr:imms" (where the immr and imms fields are each 6 bits)
/// is a valid encoding for an integer value with regSize bits.
static inline bool AArch64_AM_isValidDecodeLogicalImmediate(uint64_t val,
unsigned regSize)
{
// Extract the N and imms fields needed for checking.
unsigned N = (val >> 12) & 1;
unsigned imms = val & 0x3f;
if (regSize == 32 && N != 0) // undefined logical immediate encoding
return false;
int len = 31 - countLeadingZeros((N << 6) | (~imms & 0x3f));
if (len < 0) // undefined logical immediate encoding
return false;
unsigned size = (1 << len);
unsigned S = imms & (size - 1);
if (S == size - 1) // undefined logical immediate encoding
return false;
return true;
}
//===----------------------------------------------------------------------===//
// Floating-point Immediates
//
static inline float AArch64_AM_getFPImmFloat(unsigned Imm)
{
// We expect an 8-bit binary encoding of a floating-point number here.
uint8_t Sign = (Imm >> 7) & 0x1;
uint8_t Exp = (Imm >> 4) & 0x7;
uint8_t Mantissa = Imm & 0xf;
// 8-bit FP IEEE Float Encoding
// abcd efgh aBbbbbbc defgh000 00000000 00000000
//
// where B = NOT(b);
uint32_t I = 0;
I |= Sign << 31;
I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30;
I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25;
I |= (Exp & 0x3) << 23;
I |= Mantissa << 19;
return BitsToFloat(I);
}
//===--------------------------------------------------------------------===//
// AdvSIMD Modified Immediates
//===--------------------------------------------------------------------===//
// 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh
static inline bool AArch64_AM_isAdvSIMDModImmType1(uint64_t Imm)
{
return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
((Imm & 0xffffff00ffffff00ULL) == 0);
}
static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType1(uint64_t Imm)
{
return (Imm & 0xffULL);
}
static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType1(uint8_t Imm)
{
uint64_t EncVal = Imm;
return (EncVal << 32) | EncVal;
}
// 0x00 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00
static inline bool AArch64_AM_isAdvSIMDModImmType2(uint64_t Imm)
{
return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
((Imm & 0xffff00ffffff00ffULL) == 0);
}
static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType2(uint64_t Imm)
{
return (Imm & 0xff00ULL) >> 8;
}
static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType2(uint8_t Imm)
{
uint64_t EncVal = Imm;
return (EncVal << 40) | (EncVal << 8);
}
// 0x00 abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00
static inline bool AArch64_AM_isAdvSIMDModImmType3(uint64_t Imm)
{
return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
((Imm & 0xff00ffffff00ffffULL) == 0);
}
static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType3(uint64_t Imm)
{
return (Imm & 0xff0000ULL) >> 16;
}
static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType3(uint8_t Imm)
{
uint64_t EncVal = Imm;
return (EncVal << 48) | (EncVal << 16);
}
// abcdefgh 0x00 0x00 0x00 abcdefgh 0x00 0x00 0x00
static inline bool AArch64_AM_isAdvSIMDModImmType4(uint64_t Imm)
{
return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
((Imm & 0x00ffffff00ffffffULL) == 0);
}
static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType4(uint64_t Imm)
{
return (Imm & 0xff000000ULL) >> 24;
}
static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType4(uint8_t Imm)
{
uint64_t EncVal = Imm;
return (EncVal << 56) | (EncVal << 24);
}
// 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh
static inline bool AArch64_AM_isAdvSIMDModImmType5(uint64_t Imm)
{
return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
(((Imm & 0x00ff0000ULL) >> 16) == (Imm & 0x000000ffULL)) &&
((Imm & 0xff00ff00ff00ff00ULL) == 0);
}
static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType5(uint64_t Imm)
{
return (Imm & 0xffULL);
}
static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType5(uint8_t Imm)
{
uint64_t EncVal = Imm;
return (EncVal << 48) | (EncVal << 32) | (EncVal << 16) | EncVal;
}
// abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00 abcdefgh 0x00
static inline bool AArch64_AM_isAdvSIMDModImmType6(uint64_t Imm)
{
return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
(((Imm & 0xff000000ULL) >> 16) == (Imm & 0x0000ff00ULL)) &&
((Imm & 0x00ff00ff00ff00ffULL) == 0);
}
static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType6(uint64_t Imm)
{
return (Imm & 0xff00ULL) >> 8;
}
static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType6(uint8_t Imm)
{
uint64_t EncVal = Imm;
return (EncVal << 56) | (EncVal << 40) | (EncVal << 24) | (EncVal << 8);
}
// 0x00 0x00 abcdefgh 0xFF 0x00 0x00 abcdefgh 0xFF
static inline bool AArch64_AM_isAdvSIMDModImmType7(uint64_t Imm)
{
return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
((Imm & 0xffff00ffffff00ffULL) == 0x000000ff000000ffULL);
}
static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType7(uint64_t Imm)
{
return (Imm & 0xff00ULL) >> 8;
}
static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType7(uint8_t Imm)
{
uint64_t EncVal = Imm;
return (EncVal << 40) | (EncVal << 8) | 0x000000ff000000ffULL;
}
// 0x00 abcdefgh 0xFF 0xFF 0x00 abcdefgh 0xFF 0xFF
static inline bool AArch64_AM_isAdvSIMDModImmType8(uint64_t Imm)
{
return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
((Imm & 0xff00ffffff00ffffULL) == 0x0000ffff0000ffffULL);
}
static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType8(uint8_t Imm)
{
uint64_t EncVal = Imm;
return (EncVal << 48) | (EncVal << 16) | 0x0000ffff0000ffffULL;
}
static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType8(uint64_t Imm)
{
return (Imm & 0x00ff0000ULL) >> 16;
}
// abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh abcdefgh
static inline bool AArch64_AM_isAdvSIMDModImmType9(uint64_t Imm)
{
return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
((Imm >> 48) == (Imm & 0x0000ffffULL)) &&
((Imm >> 56) == (Imm & 0x000000ffULL));
}
static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType9(uint64_t Imm)
{
return (Imm & 0xffULL);
}
static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType9(uint8_t Imm)
{
uint64_t EncVal = Imm;
EncVal |= (EncVal << 8);
EncVal |= (EncVal << 16);
EncVal |= (EncVal << 32);
return EncVal;
}
// aaaaaaaa bbbbbbbb cccccccc dddddddd eeeeeeee ffffffff gggggggg hhhhhhhh
// cmode: 1110, op: 1
static inline bool AArch64_AM_isAdvSIMDModImmType10(uint64_t Imm)
{
#if defined(_MSC_VER) && _MSC_VER == 1937 && !defined(__clang__) && \
defined(_M_ARM64)
// The MSVC compiler 19.37 for ARM64 has an optimization bug that
// causes an incorrect behavior with the orignal version. Work around
// by using a slightly different variation.
// https://developercommunity.visualstudio.com/t/C-ARM64-compiler-optimization-bug/10481261
constexpr uint64_t Mask = 0xFFULL;
uint64_t ByteA = (Imm >> 56) & Mask;
uint64_t ByteB = (Imm >> 48) & Mask;
uint64_t ByteC = (Imm >> 40) & Mask;
uint64_t ByteD = (Imm >> 32) & Mask;
uint64_t ByteE = (Imm >> 24) & Mask;
uint64_t ByteF = (Imm >> 16) & Mask;
uint64_t ByteG = (Imm >> 8) & Mask;
uint64_t ByteH = Imm & Mask;
return (ByteA == 0ULL || ByteA == Mask) &&
(ByteB == 0ULL || ByteB == Mask) &&
(ByteC == 0ULL || ByteC == Mask) &&
(ByteD == 0ULL || ByteD == Mask) &&
(ByteE == 0ULL || ByteE == Mask) &&
(ByteF == 0ULL || ByteF == Mask) &&
(ByteG == 0ULL || ByteG == Mask) &&
(ByteH == 0ULL || ByteH == Mask);
#else
uint64_t ByteA = Imm & 0xff00000000000000ULL;
uint64_t ByteB = Imm & 0x00ff000000000000ULL;
uint64_t ByteC = Imm & 0x0000ff0000000000ULL;
uint64_t ByteD = Imm & 0x000000ff00000000ULL;
uint64_t ByteE = Imm & 0x00000000ff000000ULL;
uint64_t ByteF = Imm & 0x0000000000ff0000ULL;
uint64_t ByteG = Imm & 0x000000000000ff00ULL;
uint64_t ByteH = Imm & 0x00000000000000ffULL;
return (ByteA == 0ULL || ByteA == 0xff00000000000000ULL) &&
(ByteB == 0ULL || ByteB == 0x00ff000000000000ULL) &&
(ByteC == 0ULL || ByteC == 0x0000ff0000000000ULL) &&
(ByteD == 0ULL || ByteD == 0x000000ff00000000ULL) &&
(ByteE == 0ULL || ByteE == 0x00000000ff000000ULL) &&
(ByteF == 0ULL || ByteF == 0x0000000000ff0000ULL) &&
(ByteG == 0ULL || ByteG == 0x000000000000ff00ULL) &&
(ByteH == 0ULL || ByteH == 0x00000000000000ffULL);
#endif
}
static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType10(uint64_t Imm)
{
uint8_t BitA = (Imm & 0xff00000000000000ULL) != 0;
uint8_t BitB = (Imm & 0x00ff000000000000ULL) != 0;
uint8_t BitC = (Imm & 0x0000ff0000000000ULL) != 0;
uint8_t BitD = (Imm & 0x000000ff00000000ULL) != 0;
uint8_t BitE = (Imm & 0x00000000ff000000ULL) != 0;
uint8_t BitF = (Imm & 0x0000000000ff0000ULL) != 0;
uint8_t BitG = (Imm & 0x000000000000ff00ULL) != 0;
uint8_t BitH = (Imm & 0x00000000000000ffULL) != 0;
uint8_t EncVal = BitA;
EncVal <<= 1;
EncVal |= BitB;
EncVal <<= 1;
EncVal |= BitC;
EncVal <<= 1;
EncVal |= BitD;
EncVal <<= 1;
EncVal |= BitE;
EncVal <<= 1;
EncVal |= BitF;
EncVal <<= 1;
EncVal |= BitG;
EncVal <<= 1;
EncVal |= BitH;
return EncVal;
}
static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType10(uint8_t Imm)
{
uint64_t EncVal = 0;
if (Imm & 0x80)
EncVal |= 0xff00000000000000ULL;
if (Imm & 0x40)
EncVal |= 0x00ff000000000000ULL;
if (Imm & 0x20)
EncVal |= 0x0000ff0000000000ULL;
if (Imm & 0x10)
EncVal |= 0x000000ff00000000ULL;
if (Imm & 0x08)
EncVal |= 0x00000000ff000000ULL;
if (Imm & 0x04)
EncVal |= 0x0000000000ff0000ULL;
if (Imm & 0x02)
EncVal |= 0x000000000000ff00ULL;
if (Imm & 0x01)
EncVal |= 0x00000000000000ffULL;
return EncVal;
}
// aBbbbbbc defgh000 0x00 0x00 aBbbbbbc defgh000 0x00 0x00
static inline bool AArch64_AM_isAdvSIMDModImmType11(uint64_t Imm)
{
uint64_t BString = (Imm & 0x7E000000ULL) >> 25;
return ((Imm >> 32) == (Imm & 0xffffffffULL)) &&
(BString == 0x1f || BString == 0x20) &&
((Imm & 0x0007ffff0007ffffULL) == 0);
}
static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType11(uint64_t Imm)
{
uint8_t BitA = (Imm & 0x80000000ULL) != 0;
uint8_t BitB = (Imm & 0x20000000ULL) != 0;
uint8_t BitC = (Imm & 0x01000000ULL) != 0;
uint8_t BitD = (Imm & 0x00800000ULL) != 0;
uint8_t BitE = (Imm & 0x00400000ULL) != 0;
uint8_t BitF = (Imm & 0x00200000ULL) != 0;
uint8_t BitG = (Imm & 0x00100000ULL) != 0;
uint8_t BitH = (Imm & 0x00080000ULL) != 0;
uint8_t EncVal = BitA;
EncVal <<= 1;
EncVal |= BitB;
EncVal <<= 1;
EncVal |= BitC;
EncVal <<= 1;
EncVal |= BitD;
EncVal <<= 1;
EncVal |= BitE;
EncVal <<= 1;
EncVal |= BitF;
EncVal <<= 1;
EncVal |= BitG;
EncVal <<= 1;
EncVal |= BitH;
return EncVal;
}
static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType11(uint8_t Imm)
{
uint64_t EncVal = 0;
if (Imm & 0x80)
EncVal |= 0x80000000ULL;
if (Imm & 0x40)
EncVal |= 0x3e000000ULL;
else
EncVal |= 0x40000000ULL;
if (Imm & 0x20)
EncVal |= 0x01000000ULL;
if (Imm & 0x10)
EncVal |= 0x00800000ULL;
if (Imm & 0x08)
EncVal |= 0x00400000ULL;
if (Imm & 0x04)
EncVal |= 0x00200000ULL;
if (Imm & 0x02)
EncVal |= 0x00100000ULL;
if (Imm & 0x01)
EncVal |= 0x00080000ULL;
return (EncVal << 32) | EncVal;
}
// aBbbbbbb bbcdefgh 0x00 0x00 0x00 0x00 0x00 0x00
static inline bool AArch64_AM_isAdvSIMDModImmType12(uint64_t Imm)
{
uint64_t BString = (Imm & 0x7fc0000000000000ULL) >> 54;
return ((BString == 0xff || BString == 0x100) &&
((Imm & 0x0000ffffffffffffULL) == 0));
}
static inline uint8_t AArch64_AM_encodeAdvSIMDModImmType12(uint64_t Imm)
{
uint8_t BitA = (Imm & 0x8000000000000000ULL) != 0;
uint8_t BitB = (Imm & 0x0040000000000000ULL) != 0;
uint8_t BitC = (Imm & 0x0020000000000000ULL) != 0;
uint8_t BitD = (Imm & 0x0010000000000000ULL) != 0;
uint8_t BitE = (Imm & 0x0008000000000000ULL) != 0;
uint8_t BitF = (Imm & 0x0004000000000000ULL) != 0;
uint8_t BitG = (Imm & 0x0002000000000000ULL) != 0;
uint8_t BitH = (Imm & 0x0001000000000000ULL) != 0;
uint8_t EncVal = BitA;
EncVal <<= 1;
EncVal |= BitB;
EncVal <<= 1;
EncVal |= BitC;
EncVal <<= 1;
EncVal |= BitD;
EncVal <<= 1;
EncVal |= BitE;
EncVal <<= 1;
EncVal |= BitF;
EncVal <<= 1;
EncVal |= BitG;
EncVal <<= 1;
EncVal |= BitH;
return EncVal;
}
static inline uint64_t AArch64_AM_decodeAdvSIMDModImmType12(uint8_t Imm)
{
uint64_t EncVal = 0;
if (Imm & 0x80)
EncVal |= 0x8000000000000000ULL;
if (Imm & 0x40)
EncVal |= 0x3fc0000000000000ULL;
else
EncVal |= 0x4000000000000000ULL;
if (Imm & 0x20)
EncVal |= 0x0020000000000000ULL;
if (Imm & 0x10)
EncVal |= 0x0010000000000000ULL;
if (Imm & 0x08)
EncVal |= 0x0008000000000000ULL;
if (Imm & 0x04)
EncVal |= 0x0004000000000000ULL;
if (Imm & 0x02)
EncVal |= 0x0002000000000000ULL;
if (Imm & 0x01)
EncVal |= 0x0001000000000000ULL;
return (EncVal << 32) | EncVal;
}
/// Returns true if Imm is the concatenation of a repeating pattern of type T.
#define DEFINE_isSVEMaskOfIdenticalElements(T) \
static inline bool CONCAT(AArch64_AM_isSVEMaskOfIdenticalElements, \
T)(int64_t Imm) \
{ \
union { \
int64_t In; \
T Out[sizeof(int64_t) / sizeof(T)]; \
} U_Parts; \
U_Parts.In = Imm; \
T *Parts = U_Parts.Out; \
for (int i = 0; i < (sizeof(int64_t) / sizeof(T)); i++) { \
if (Parts[i] != Parts[0]) \
return false; \
} \
return true; \
}
DEFINE_isSVEMaskOfIdenticalElements(int8_t);
DEFINE_isSVEMaskOfIdenticalElements(int16_t);
DEFINE_isSVEMaskOfIdenticalElements(int32_t);
DEFINE_isSVEMaskOfIdenticalElements(int64_t);
static inline bool isSVECpyImm8(int64_t Imm)
{
bool IsImm8 = (int8_t)Imm == Imm;
return IsImm8 || (uint8_t)Imm == Imm;
}
static inline bool isSVECpyImm16(int64_t Imm)
{
bool IsImm8 = (int8_t)Imm == Imm;
bool IsImm16 = (int16_t)(Imm & ~0xff) == Imm;
return IsImm8 || IsImm16 || (uint16_t)(Imm & ~0xff) == Imm;
}
static inline bool isSVECpyImm32(int64_t Imm)
{
bool IsImm8 = (int8_t)Imm == Imm;
bool IsImm16 = (int16_t)(Imm & ~0xff) == Imm;
return IsImm8 || IsImm16;
}
static inline bool isSVECpyImm64(int64_t Imm)
{
bool IsImm8 = (int8_t)Imm == Imm;
bool IsImm16 = (int16_t)(Imm & ~0xff) == Imm;
return IsImm8 || IsImm16;
}
/// Return true if Imm is valid for DUPM and has no single CPY/DUP equivalent.
static inline bool
AArch64_AM_isSVEMoveMaskPreferredLogicalImmediate(int64_t Imm)
{
if (isSVECpyImm64(Imm))
return false;
union {
int64_t In;
int32_t Out[2];
} U_S;
U_S.In = Imm;
int32_t *S = U_S.Out;
union {
int64_t In;
int16_t Out[4];
} U_H;
U_H.In = Imm;
int16_t *H = U_H.Out;
union {
int64_t In;
int8_t Out[8];
} U_B;
U_B.In = Imm;
int8_t *B = U_B.Out;
if (CONCAT(AArch64_AM_isSVEMaskOfIdenticalElements, int32_t)(Imm) &&
isSVECpyImm32(S[0]))
return false;
if (CONCAT(AArch64_AM_isSVEMaskOfIdenticalElements, int16_t)(Imm) &&
isSVECpyImm16(H[0]))
return false;
if (CONCAT(AArch64_AM_isSVEMaskOfIdenticalElements, int8_t)(Imm) &&
isSVECpyImm8(B[0]))
return false;
return AArch64_AM_isLogicalImmediate(Imm, 64);
}
inline static bool AArch64_AM_isAnyMOVZMovAlias(uint64_t Value, int RegWidth)
{
for (int Shift = 0; Shift <= RegWidth - 16; Shift += 16)
if ((Value & ~(0xffffULL << Shift)) == 0)
return true;
return false;
}
inline static bool AArch64_AM_isMOVZMovAlias(uint64_t Value, int Shift,
int RegWidth)
{
if (RegWidth == 32)
Value &= 0xffffffffULL;
// "lsl #0" takes precedence: in practice this only affects "#0, lsl #0".
if (Value == 0 && Shift != 0)
return false;
return (Value & ~(0xffffULL << Shift)) == 0;
}
inline static bool AArch64_AM_isMOVNMovAlias(uint64_t Value, int Shift,
int RegWidth)
{
// MOVZ takes precedence over MOVN.
if (AArch64_AM_isAnyMOVZMovAlias(Value, RegWidth))
return false;
Value = ~Value;
if (RegWidth == 32)
Value &= 0xffffffffULL;
return AArch64_AM_isMOVZMovAlias(Value, Shift, RegWidth);
}
inline static bool AArch64_AM_isAnyMOVWMovAlias(uint64_t Value, int RegWidth)
{
if (AArch64_AM_isAnyMOVZMovAlias(Value, RegWidth))
return true;
// It's not a MOVZ, but it might be a MOVN.
Value = ~Value;
if (RegWidth == 32)
Value &= 0xffffffffULL;
return AArch64_AM_isAnyMOVZMovAlias(Value, RegWidth);
}
// CS namespace end: AArch64_AM
// end namespace AArch64_AM
// end namespace llvm
#endif