XenonRecomp/PowerRecomp/recompiler.cpp
2024-12-13 18:31:55 +03:00

2496 lines
95 KiB
C++

#include "pch.h"
#include "recompiler.h"
static uint64_t ComputeMask(uint32_t mstart, uint32_t mstop)
{
mstart &= 0x3F;
mstop &= 0x3F;
uint64_t value = (UINT64_MAX >> mstart) ^ ((mstop >= 63) ? 0 : UINT64_MAX >> (mstop + 1));
return mstart <= mstop ? value : ~value;
}
void Recompiler::LoadConfig(const std::string_view& configFilePath)
{
config.Load(configFilePath);
const auto file = LoadFile((config.directoryPath + config.filePath).c_str());
image = Image::ParseImage(file.data(), file.size());
}
void Recompiler::Analyse()
{
for (size_t i = 14; i < 128; i++)
{
if (i < 32)
{
auto& restgpr = functions.emplace_back();
restgpr.base = config.restGpr14Address + (i - 14) * 4;
restgpr.size = (32 - i) * 4 + 12;
image.symbols.emplace(Symbol{ fmt::format("__restgprlr_{}", i), restgpr.base, restgpr.size, Symbol_Function });
auto& savegpr = functions.emplace_back();
savegpr.base = config.saveGpr14Address + (i - 14) * 4;
savegpr.size = (32 - i) * 4 + 8;
image.symbols.emplace(fmt::format("__savegprlr_{}", i), savegpr.base, savegpr.size, Symbol_Function);
auto& restfpr = functions.emplace_back();
restfpr.base = config.restFpr14Address + (i - 14) * 4;
restfpr.size = (32 - i) * 4 + 4;
image.symbols.emplace(fmt::format("__restfpr_{}", i), restfpr.base, restfpr.size, Symbol_Function);
auto& savefpr = functions.emplace_back();
savefpr.base = config.saveFpr14Address + (i - 14) * 4;
savefpr.size = (32 - i) * 4 + 4;
image.symbols.emplace(fmt::format("__savefpr_{}", i), savefpr.base, savefpr.size, Symbol_Function);
auto& restvmx = functions.emplace_back();
restvmx.base = config.restVmx14Address + (i - 14) * 8;
restvmx.size = (32 - i) * 8 + 4;
image.symbols.emplace(fmt::format("__restvmx_{}", i), restvmx.base, restvmx.size, Symbol_Function);
auto& savevmx = functions.emplace_back();
savevmx.base = config.saveVmx14Address + (i - 14) * 8;
savevmx.size = (32 - i) * 8 + 4;
image.symbols.emplace(fmt::format("__savevmx_{}", i), savevmx.base, savevmx.size, Symbol_Function);
}
if (i >= 64)
{
auto& restvmx = functions.emplace_back();
restvmx.base = config.restVmx64Address + (i - 64) * 8;
restvmx.size = (128 - i) * 8 + 4;
image.symbols.emplace(fmt::format("__restvmx_{}", i), restvmx.base, restvmx.size, Symbol_Function);
auto& savevmx = functions.emplace_back();
savevmx.base = config.saveVmx64Address + (i - 64) * 8;
savevmx.size = (128 - i) * 8 + 4;
image.symbols.emplace(fmt::format("__savevmx_{}", i), savevmx.base, savevmx.size, Symbol_Function);
}
}
for (auto& [address, size] : config.functions)
{
functions.emplace_back(address, size);
image.symbols.emplace(fmt::format("sub_{:X}", address), address, size, Symbol_Function);
}
auto& pdata = *image.Find(".pdata");
size_t count = pdata.size / sizeof(IMAGE_CE_RUNTIME_FUNCTION);
auto* pf = (IMAGE_CE_RUNTIME_FUNCTION*)pdata.data;
for (size_t i = 0; i < count; i++)
{
auto fn = pf[i];
fn.BeginAddress = ByteSwap(fn.BeginAddress);
fn.Data = ByteSwap(fn.Data);
if (image.symbols.find(fn.BeginAddress) == image.symbols.end())
{
auto& f = functions.emplace_back();
f.base = fn.BeginAddress;
f.size = fn.FunctionLength * 4;
image.symbols.emplace(fmt::format("sub_{:X}", f.base), f.base, f.size, Symbol_Function);
}
}
for (const auto& section : image.sections)
{
if (!(section.flags & SectionFlags_Code))
{
continue;
}
size_t base = section.base;
uint8_t* data = section.data;
uint8_t* dataEnd = section.data + section.size;
while (data < dataEnd)
{
uint32_t insn = ByteSwap(*(uint32_t*)data);
if (PPC_OP(insn) == PPC_OP_B && PPC_BL(insn))
{
size_t address = base + (data - section.data) + PPC_BI(insn);
if (address >= section.base && address < section.base + section.size && image.symbols.find(address) == image.symbols.end())
{
auto data = section.data + address - section.base;
auto& fn = functions.emplace_back(Function::Analyze(data, section.base + section.size - address, address));
image.symbols.emplace(fmt::format("sub_{:X}", fn.base), fn.base, fn.size, Symbol_Function);
}
}
data += 4;
}
data = section.data;
while (data < dataEnd)
{
auto invalidInstr = config.invalidInstructions.find(ByteSwap(*(uint32_t*)data));
if (invalidInstr != config.invalidInstructions.end())
{
base += invalidInstr->second;
data += invalidInstr->second;
continue;
}
auto fnSymbol = image.symbols.find(base);
if (fnSymbol != image.symbols.end() && fnSymbol->address == base && fnSymbol->type == Symbol_Function)
{
assert(fnSymbol->address == base);
base += fnSymbol->size;
data += fnSymbol->size;
}
else
{
auto& fn = functions.emplace_back(Function::Analyze(data, dataEnd - data, base));
image.symbols.emplace(fmt::format("sub_{:X}", fn.base), fn.base, fn.size, Symbol_Function);
base += fn.size;
data += fn.size;
}
}
}
std::sort(functions.begin(), functions.end(), [](auto& lhs, auto& rhs) { return lhs.base < rhs.base; });
}
bool Recompiler::Recompile(
const Function& fn,
uint32_t base,
const ppc_insn& insn,
const uint32_t* data,
std::unordered_map<uint32_t, RecompilerSwitchTable>::iterator& switchTable,
RecompilerLocalVariables& localVariables,
CSRState& csrState)
{
println("\t// {} {}", insn.opcode->name, insn.op_str);
// TODO: we could cache these formats in an array
auto r = [&](size_t index)
{
if ((config.nonArgumentRegistersAsLocalVariables && (index == 0 || index == 2 || index == 11 || index == 12)) ||
(config.nonVolatileRegistersAsLocalVariables && index >= 14))
{
localVariables.r[index] = true;
return fmt::format("r{}", index);
}
return fmt::format("ctx.r{}", index);
};
auto f = [&](size_t index)
{
if ((config.nonArgumentRegistersAsLocalVariables && index == 0) ||
(config.nonVolatileRegistersAsLocalVariables && index >= 14))
{
localVariables.f[index] = true;
return fmt::format("f{}", index);
}
return fmt::format("ctx.f{}", index);
};
auto v = [&](size_t index)
{
if ((config.nonArgumentRegistersAsLocalVariables && (index >= 32 && index <= 63)) ||
(config.nonVolatileRegistersAsLocalVariables && ((index >= 14 && index <= 31) || (index >= 64 && index <= 127))))
{
localVariables.v[index] = true;
return fmt::format("v{}", index);
}
return fmt::format("ctx.v{}", index);
};
auto cr = [&](size_t index)
{
if (config.crRegistersAsLocalVariables)
{
localVariables.cr[index] = true;
return fmt::format("cr{}", index);
}
return fmt::format("ctx.cr{}", index);
};
auto ctr = [&]()
{
if (config.ctrAsLocalVariable)
{
localVariables.ctr = true;
return "ctr";
}
return "ctx.ctr";
};
auto xer = [&]()
{
if (config.xerAsLocalVariable)
{
localVariables.xer = true;
return "xer";
}
return "ctx.xer";
};
auto reserved = [&]()
{
if (config.reservedRegisterAsLocalVariable)
{
localVariables.reserved = true;
return "reserved";
}
return "ctx.reserved";
};
auto temp = [&]()
{
localVariables.temp = true;
return "temp";
};
auto vTemp = [&]()
{
localVariables.vTemp = true;
return "vTemp";
};
auto env = [&]()
{
localVariables.env = true;
return "env";
};
auto ea = [&]()
{
localVariables.ea = true;
return "ea";
};
// TODO (Sajid): Check for out of bounds access
auto mmioStore = [&]() -> bool
{
return *(data + 1) == c_eieio;
};
auto printFunctionCall = [&](uint32_t address)
{
if (address == config.longJmpAddress)
{
println("\tlongjmp(*reinterpret_cast<jmp_buf*>(base + {}.u32), {}.s32);", r(3), r(4));
}
else if (address == config.setJmpAddress)
{
println("\t{} = ctx;", env());
println("\t{}.s64 = setjmp(*reinterpret_cast<jmp_buf*>(base + {}.u32));", r(3), r(3));
println("\tif ({}.s64 != 0) ctx = {};", r(3), env());
}
else
{
auto targetSymbol = image.symbols.find(address);
if (targetSymbol != image.symbols.end() && targetSymbol->address == address && targetSymbol->type == Symbol_Function)
{
if (config.nonVolatileRegistersAsLocalVariables && (targetSymbol->name.find("__rest") == 0 || targetSymbol->name.find("__save") == 0))
{
// print nothing
}
else
{
println("\t{}(ctx, base);", targetSymbol->name);
}
}
else
{
println("\t// ERROR {:X}", address);
}
}
};
auto printConditionalBranch = [&](bool not_, const std::string_view& cond)
{
if (insn.operands[1] < fn.base || insn.operands[1] >= fn.base + fn.size)
{
println("\tif ({}{}.{}) {{", not_ ? "!" : "", cr(insn.operands[0]), cond);
print("\t");
printFunctionCall(insn.operands[1]);
println("\t\treturn;");
println("\t}}");
}
else
{
println("\tif ({}{}.{}) goto loc_{:X};", not_ ? "!" : "", cr(insn.operands[0]), cond, insn.operands[1]);
}
};
auto printSetFlushMode = [&](bool enable)
{
auto newState = enable ? CSRState::VMX : CSRState::FPU;
if (csrState != newState)
{
auto prefix = enable ? "enable" : "disable";
auto suffix = csrState != CSRState::Unknown ? "Unconditional" : "";
println("\tctx.fpscr.{}FlushMode{}();", prefix, suffix);
csrState = newState;
}
};
auto midAsmHook = config.midAsmHooks.find(base);
if (midAsmHook != config.midAsmHooks.end())
{
bool returnsBool = midAsmHook->second.returnOnFalse || midAsmHook->second.returnOnTrue ||
midAsmHook->second.jumpAddressOnFalse != NULL || midAsmHook->second.jumpAddressOnTrue != NULL;
print("\t");
if (returnsBool)
print("if (");
print("{}(", midAsmHook->second.name);
for (auto& reg : midAsmHook->second.registers)
{
if (out.back() != '(')
out += ", ";
switch (reg[0])
{
case 'c':
if (reg == "ctr")
out += ctr();
else
out += cr(std::atoi(reg.c_str() + 2));
break;
case 'x':
out += xer();
break;
case 'r':
if (reg == "reserved")
out += reserved();
else
out += r(std::atoi(reg.c_str() + 1));
break;
case 'f':
if (reg == "fpscr")
out += "ctx.fpscr";
else
out += f(std::atoi(reg.c_str() + 1));
break;
case 'v':
out += v(std::atoi(reg.c_str() + 1));
break;
}
}
if (returnsBool)
{
println(")) {{");
if (midAsmHook->second.returnOnTrue)
println("\t\treturn;");
else if (midAsmHook->second.jumpAddressOnTrue != NULL)
println("\t\tgoto loc_{:X};", midAsmHook->second.jumpAddressOnTrue);
println("\t}}");
println("\telse {{");
if (midAsmHook->second.returnOnFalse)
println("\t\treturn;");
else if (midAsmHook->second.jumpAddressOnFalse != NULL)
println("\t\tgoto loc_{:X};", midAsmHook->second.jumpAddressOnFalse);
println("\t}}");
}
else
{
println(");");
if (midAsmHook->second.ret)
println("\treturn;");
else if (midAsmHook->second.jumpAddress != NULL)
println("\tgoto loc_{:X};", midAsmHook->second.jumpAddress);
}
}
int id = insn.opcode->id;
// Handling instructions that don't disassemble correctly for some reason here
if (id == PPC_INST_VUPKHSB128 && insn.operands[2] == 0x60) id = PPC_INST_VUPKHSH128;
else if (id == PPC_INST_VUPKLSB128 && insn.operands[2] == 0x60) id = PPC_INST_VUPKLSH128;
switch (id)
{
case PPC_INST_ADD:
println("\t{}.u64 = {}.u64 + {}.u64;", r(insn.operands[0]), r(insn.operands[1]), r(insn.operands[2]));
if (strchr(insn.opcode->name, '.'))
println("\t{}.compare<int32_t>({}.s32, 0, {});", cr(0), r(insn.operands[0]), xer());
break;
case PPC_INST_ADDE:
println("\t{}.u8 = ({}.u32 + {}.u32 < {}.u32) | ({}.u32 + {}.u32 + {}.ca < {}.ca);", temp(), r(insn.operands[1]), r(insn.operands[2]), r(insn.operands[1]), r(insn.operands[1]), r(insn.operands[2]), xer(), xer());
println("\t{}.u64 = {}.u64 + {}.u64 + {}.ca;", r(insn.operands[0]), r(insn.operands[1]), r(insn.operands[2]), xer());
println("\t{}.ca = {}.u8;", xer(), temp());
if (strchr(insn.opcode->name, '.'))
println("\t{}.compare<int32_t>({}.s32, 0, {});", cr(0), r(insn.operands[0]), xer());
break;
case PPC_INST_ADDI:
print("\t{}.s64 = ", r(insn.operands[0]));
if (insn.operands[1] != 0)
print("{}.s64 + ", r(insn.operands[1]));
println("{};", int32_t(insn.operands[2]));
break;
case PPC_INST_ADDIC:
println("\t{}.ca = {}.u32 > {};", xer(), r(insn.operands[1]), ~insn.operands[2]);
println("\t{}.s64 = {}.s64 + {};", r(insn.operands[0]), r(insn.operands[1]), int32_t(insn.operands[2]));
if (strchr(insn.opcode->name, '.'))
println("\t{}.compare<int32_t>({}.s32, 0, {});", cr(0), r(insn.operands[0]), xer());
break;
case PPC_INST_ADDIS:
print("\t{}.s64 = ", r(insn.operands[0]));
if (insn.operands[1] != 0)
print("{}.s64 + ", r(insn.operands[1]));
println("{};", static_cast<int32_t>(insn.operands[2] << 16));
break;
case PPC_INST_ADDZE:
println("\t{}.s64 = {}.s64 + {}.ca;", temp(), r(insn.operands[1]), xer());
println("\t{}.ca = {}.u32 < {}.u32;", xer(), temp(), r(insn.operands[1]));
println("\t{}.s64 = {}.s64;", r(insn.operands[0]), temp());
if (strchr(insn.opcode->name, '.'))
println("\t{}.compare<int32_t>({}.s32, 0, {});", cr(0), r(insn.operands[0]), xer());
break;
case PPC_INST_AND:
println("\t{}.u64 = {}.u64 & {}.u64;", r(insn.operands[0]), r(insn.operands[1]), r(insn.operands[2]));
if (strchr(insn.opcode->name, '.'))
println("\t{}.compare<int32_t>({}.s32, 0, {});", cr(0), r(insn.operands[0]), xer());
break;
case PPC_INST_ANDC:
println("\t{}.u64 = {}.u64 & ~{}.u64;", r(insn.operands[0]), r(insn.operands[1]), r(insn.operands[2]));
if (strchr(insn.opcode->name, '.'))
println("\t{}.compare<int32_t>({}.s32, 0, {});", cr(0), r(insn.operands[0]), xer());
break;
case PPC_INST_ANDI:
println("\t{}.u64 = {}.u64 & {};", r(insn.operands[0]), r(insn.operands[1]), insn.operands[2]);
println("\t{}.compare<int32_t>({}.s32, 0, {});", cr(0), r(insn.operands[0]), xer());
break;
case PPC_INST_ANDIS:
println("\t{}.u64 = {}.u64 & {};", r(insn.operands[0]), r(insn.operands[1]), insn.operands[2] << 16);
println("\t{}.compare<int32_t>({}.s32, 0, {});", cr(0), r(insn.operands[0]), xer());
break;
case PPC_INST_ATTN:
// undefined instruction
break;
case PPC_INST_B:
if (insn.operands[0] < fn.base || insn.operands[0] >= fn.base + fn.size)
{
printFunctionCall(insn.operands[0]);
println("\treturn;");
}
else
{
println("\tgoto loc_{:X};", insn.operands[0]);
}
break;
case PPC_INST_BCTR:
if (switchTable != config.switchTables.end())
{
println("\tswitch ({}.u64) {{", r(switchTable->second.r));
for (size_t i = 0; i < switchTable->second.labels.size(); i++)
{
println("\tcase {}:", i);
auto label = switchTable->second.labels[i];
if (label < fn.base || label >= fn.base + fn.size)
{
println("\t\t// ERROR: 0x{:X}", label);
fmt::println("ERROR: Switch case at {:X} is trying to jump outside function: {:X}", base, label);
println("\t\treturn;");
}
else
{
println("\t\tgoto loc_{:X};", label);
}
}
println("\tdefault:");
println("\t\t__builtin_unreachable();");
println("\t}}");
switchTable = config.switchTables.end();
}
else
{
println("\tPPC_CALL_INDIRECT_FUNC({}.u32);", ctr());
println("\treturn;");
}
break;
case PPC_INST_BCTRL:
if (!config.skipLr)
println("\tctx.lr = 0x{:X};", base + 4);
println("\tPPC_CALL_INDIRECT_FUNC({}.u32);", ctr());
csrState = CSRState::Unknown; // the call could change it
break;
case PPC_INST_BDZ:
println("\t--{}.u64;", ctr());
println("\tif ({}.u32 == 0) goto loc_{:X};", ctr(), insn.operands[0]);
break;
case PPC_INST_BDZLR:
println("\t--{}.u64;", ctr());
println("\tif ({}.u32 == 0) return;", ctr(), insn.operands[0]);
break;
case PPC_INST_BDNZ:
println("\t--{}.u64;", ctr());
println("\tif ({}.u32 != 0) goto loc_{:X};", ctr(), insn.operands[0]);
break;
case PPC_INST_BDNZF:
// NOTE: assuming eq here as a shortcut because all the instructions in the game do that
println("\t--{}.u64;", ctr());
println("\tif ({}.u32 != 0 && !{}.eq) goto loc_{:X};", ctr(), cr(insn.operands[0] / 4), insn.operands[1]);
break;
case PPC_INST_BEQ:
printConditionalBranch(false, "eq");
break;
case PPC_INST_BEQLR:
println("\tif ({}.eq) return;", cr(insn.operands[0]));
break;
case PPC_INST_BGE:
printConditionalBranch(true, "lt");
break;
case PPC_INST_BGELR:
println("\tif (!{}.lt) return;", cr(insn.operands[0]));
break;
case PPC_INST_BGT:
printConditionalBranch(false, "gt");
break;
case PPC_INST_BGTLR:
println("\tif ({}.gt) return;", cr(insn.operands[0]));
break;
case PPC_INST_BL:
if (!config.skipLr)
println("\tctx.lr = 0x{:X};", base + 4);
printFunctionCall(insn.operands[0]);
csrState = CSRState::Unknown; // the call could change it
break;
case PPC_INST_BLE:
printConditionalBranch(true, "gt");
break;
case PPC_INST_BLELR:
println("\tif (!{}.gt) return;", cr(insn.operands[0]));
break;
case PPC_INST_BLR:
println("\treturn;");
break;
case PPC_INST_BLRL:
println("__debugbreak();");
break;
case PPC_INST_BLT:
printConditionalBranch(false, "lt");
break;
case PPC_INST_BLTLR:
println("\tif ({}.lt) return;", cr(insn.operands[0]));
break;
case PPC_INST_BNE:
printConditionalBranch(true, "eq");
break;
case PPC_INST_BNECTR:
println("\tif (!{}.eq) {{", cr(insn.operands[0]));
println("\t\tPPC_CALL_INDIRECT_FUNC({}.u32);", ctr());
println("\t\treturn;");
println("\t}}");
break;
case PPC_INST_BNELR:
println("\tif (!{}.eq) return;", cr(insn.operands[0]));
break;
case PPC_INST_CCTPL:
// no op
break;
case PPC_INST_CCTPM:
// no op
break;
case PPC_INST_CLRLDI:
println("\t{}.u64 = {}.u64 & 0x{:X};", r(insn.operands[0]), r(insn.operands[1]), (1ull << (64 - insn.operands[2])) - 1);
break;
case PPC_INST_CLRLWI:
println("\t{}.u64 = {}.u32 & 0x{:X};", r(insn.operands[0]), r(insn.operands[1]), (1ull << (32 - insn.operands[2])) - 1);
if (strchr(insn.opcode->name, '.'))
println("\t{}.compare<int32_t>({}.s32, 0, {});", cr(0), r(insn.operands[0]), xer());
break;
case PPC_INST_CMPD:
println("\t{}.compare<int64_t>({}.s64, {}.s64, {});", cr(insn.operands[0]), r(insn.operands[1]), r(insn.operands[2]), xer());
break;
case PPC_INST_CMPDI:
println("\t{}.compare<int64_t>({}.s64, {}, {});", cr(insn.operands[0]), r(insn.operands[1]), int32_t(insn.operands[2]), xer());
break;
case PPC_INST_CMPLD:
println("\t{}.compare<uint64_t>({}.u64, {}.u64, {});", cr(insn.operands[0]), r(insn.operands[1]), r(insn.operands[2]), xer());
break;
case PPC_INST_CMPLDI:
println("\t{}.compare<uint64_t>({}.u64, {}, {});", cr(insn.operands[0]), r(insn.operands[1]), insn.operands[2], xer());
break;
case PPC_INST_CMPLW:
println("\t{}.compare<uint32_t>({}.u32, {}.u32, {});", cr(insn.operands[0]), r(insn.operands[1]), r(insn.operands[2]), xer());
break;
case PPC_INST_CMPLWI:
println("\t{}.compare<uint32_t>({}.u32, {}, {});", cr(insn.operands[0]), r(insn.operands[1]), insn.operands[2], xer());
break;
case PPC_INST_CMPW:
println("\t{}.compare<int32_t>({}.s32, {}.s32, {});", cr(insn.operands[0]), r(insn.operands[1]), r(insn.operands[2]), xer());
break;
case PPC_INST_CMPWI:
println("\t{}.compare<int32_t>({}.s32, {}, {});", cr(insn.operands[0]), r(insn.operands[1]), int32_t(insn.operands[2]), xer());
break;
case PPC_INST_CNTLZD:
println("\t{}.u64 = __lzcnt64({}.u64);", r(insn.operands[0]), r(insn.operands[1]));
break;
case PPC_INST_CNTLZW:
println("\t{}.u64 = __lzcnt({}.u32);", r(insn.operands[0]), r(insn.operands[1]));
break;
case PPC_INST_DB16CYC:
// no op
break;
case PPC_INST_DCBF:
// no op
break;
case PPC_INST_DCBT:
// no op
break;
case PPC_INST_DCBTST:
// no op
break;
case PPC_INST_DCBZ:
print("\tmemset(base + ((");
if (insn.operands[0] != 0)
print("{}.u32 + ", r(insn.operands[0]));
println("{}.u32) & ~31), 0, 32);", r(insn.operands[1]));
break;
case PPC_INST_DCBZL:
print("\tmemset(base + ((");
if (insn.operands[0] != 0)
print("{}.u32 + ", r(insn.operands[0]));
println("{}.u32) & ~127), 0, 128);", r(insn.operands[1]));
break;
case PPC_INST_DIVD:
println("\t{}.s64 = {}.s64 / {}.s64;", r(insn.operands[0]), r(insn.operands[1]), r(insn.operands[2]));
break;
case PPC_INST_DIVDU:
println("\t{}.u64 = {}.u64 / {}.u64;", r(insn.operands[0]), r(insn.operands[1]), r(insn.operands[2]));
if (strchr(insn.opcode->name, '.'))
println("\t{}.compare<int32_t>({}.s32, 0, {});", cr(0), r(insn.operands[0]), xer());
break;
case PPC_INST_DIVW:
println("\t{}.s32 = {}.s32 / {}.s32;", r(insn.operands[0]), r(insn.operands[1]), r(insn.operands[2]));
if (strchr(insn.opcode->name, '.'))
println("\t{}.compare<int32_t>({}.s32, 0, {});", cr(0), r(insn.operands[0]), xer());
break;
case PPC_INST_DIVWU:
println("\t{}.u32 = {}.u32 / {}.u32;", r(insn.operands[0]), r(insn.operands[1]), r(insn.operands[2]));
if (strchr(insn.opcode->name, '.'))
println("\t{}.compare<int32_t>({}.s32, 0, {});", cr(0), r(insn.operands[0]), xer());
break;
case PPC_INST_EIEIO:
// no op
break;
case PPC_INST_EXTSB:
println("\t{}.s64 = {}.s8;", r(insn.operands[0]), r(insn.operands[1]));
if (strchr(insn.opcode->name, '.'))
println("\t{}.compare<int32_t>({}.s32, 0, {});", cr(0), r(insn.operands[0]), xer());
break;
case PPC_INST_EXTSH:
println("\t{}.s64 = {}.s16;", r(insn.operands[0]), r(insn.operands[1]));
if (strchr(insn.opcode->name, '.'))
println("\t{}.compare<int32_t>({}.s32, 0, {});", cr(0), r(insn.operands[0]), xer());
break;
case PPC_INST_EXTSW:
println("\t{}.s64 = {}.s32;", r(insn.operands[0]), r(insn.operands[1]));
if (strchr(insn.opcode->name, '.'))
println("\t{}.compare<int32_t>({}.s32, 0, {});", cr(0), r(insn.operands[0]), xer());
break;
case PPC_INST_FABS:
printSetFlushMode(false);
println("\t{}.u64 = {}.u64 & ~0x8000000000000000;", f(insn.operands[0]), f(insn.operands[1]));
break;
case PPC_INST_FADD:
printSetFlushMode(false);
println("\t{}.f64 = {}.f64 + {}.f64;", f(insn.operands[0]), f(insn.operands[1]), f(insn.operands[2]));
break;
case PPC_INST_FADDS:
printSetFlushMode(false);
println("\t{}.f64 = double(float({}.f64 + {}.f64));", f(insn.operands[0]), f(insn.operands[1]), f(insn.operands[2]));
break;
case PPC_INST_FCFID:
printSetFlushMode(false);
println("\t{}.f64 = double({}.s64);", f(insn.operands[0]), f(insn.operands[1]));
break;
case PPC_INST_FCMPU:
printSetFlushMode(false);
println("\t{}.compare({}.f64, {}.f64);", cr(insn.operands[0]), f(insn.operands[1]), f(insn.operands[2]));
break;
case PPC_INST_FCTID:
printSetFlushMode(false);
println("\t{}.s64 = ({}.f64 > double(LLONG_MAX)) ? LLONG_MAX : _mm_cvtsd_si64(_mm_load_sd(&{}.f64));", f(insn.operands[0]), f(insn.operands[1]), f(insn.operands[1]));
break;
case PPC_INST_FCTIDZ:
printSetFlushMode(false);
println("\t{}.s64 = ({}.f64 > double(LLONG_MAX)) ? LLONG_MAX : _mm_cvttsd_si64(_mm_load_sd(&{}.f64));", f(insn.operands[0]), f(insn.operands[1]), f(insn.operands[1]));
break;
case PPC_INST_FCTIWZ:
printSetFlushMode(false);
println("\t{}.s64 = ({}.f64 > double(INT_MAX)) ? INT_MAX : _mm_cvttsd_si32(_mm_load_sd(&{}.f64));", f(insn.operands[0]), f(insn.operands[1]), f(insn.operands[1]));
break;
case PPC_INST_FDIV:
printSetFlushMode(false);
println("\t{}.f64 = {}.f64 / {}.f64;", f(insn.operands[0]), f(insn.operands[1]), f(insn.operands[2]));
break;
case PPC_INST_FDIVS:
printSetFlushMode(false);
println("\t{}.f64 = double(float({}.f64 / {}.f64));", f(insn.operands[0]), f(insn.operands[1]), f(insn.operands[2]));
break;
case PPC_INST_FMADD:
printSetFlushMode(false);
println("\t{}.f64 = {}.f64 * {}.f64 + {}.f64;", f(insn.operands[0]), f(insn.operands[1]), f(insn.operands[2]), f(insn.operands[3]));
break;
case PPC_INST_FMADDS:
printSetFlushMode(false);
println("\t{}.f64 = double(float({}.f64 * {}.f64 + {}.f64));", f(insn.operands[0]), f(insn.operands[1]), f(insn.operands[2]), f(insn.operands[3]));
break;
case PPC_INST_FMR:
printSetFlushMode(false);
println("\t{}.f64 = {}.f64;", f(insn.operands[0]), f(insn.operands[1]));
break;
case PPC_INST_FMSUB:
printSetFlushMode(false);
println("\t{}.f64 = {}.f64 * {}.f64 - {}.f64;", f(insn.operands[0]), f(insn.operands[1]), f(insn.operands[2]), f(insn.operands[3]));
break;
case PPC_INST_FMSUBS:
printSetFlushMode(false);
println("\t{}.f64 = double(float({}.f64 * {}.f64 - {}.f64));", f(insn.operands[0]), f(insn.operands[1]), f(insn.operands[2]), f(insn.operands[3]));
break;
case PPC_INST_FMUL:
printSetFlushMode(false);
println("\t{}.f64 = {}.f64 * {}.f64;", f(insn.operands[0]), f(insn.operands[1]), f(insn.operands[2]));
break;
case PPC_INST_FMULS:
printSetFlushMode(false);
println("\t{}.f64 = double(float({}.f64 * {}.f64));", f(insn.operands[0]), f(insn.operands[1]), f(insn.operands[2]));
break;
case PPC_INST_FNABS:
printSetFlushMode(false);
println("\t{}.u64 = {}.u64 | 0x8000000000000000;", f(insn.operands[0]), f(insn.operands[1]));
break;
case PPC_INST_FNEG:
printSetFlushMode(false);
println("\t{}.u64 = {}.u64 ^ 0x8000000000000000;", f(insn.operands[0]), f(insn.operands[1]));
break;
case PPC_INST_FNMADDS:
printSetFlushMode(false);
println("\t{}.f64 = double(float(-({}.f64 * {}.f64 + {}.f64)));", f(insn.operands[0]), f(insn.operands[1]), f(insn.operands[2]), f(insn.operands[3]));
break;
case PPC_INST_FNMSUB:
printSetFlushMode(false);
println("\t{}.f64 = -({}.f64 * {}.f64 - {}.f64);", f(insn.operands[0]), f(insn.operands[1]), f(insn.operands[2]), f(insn.operands[3]));
break;
case PPC_INST_FNMSUBS:
printSetFlushMode(false);
println("\t{}.f64 = double(float(-({}.f64 * {}.f64 - {}.f64)));", f(insn.operands[0]), f(insn.operands[1]), f(insn.operands[2]), f(insn.operands[3]));
break;
case PPC_INST_FRES:
printSetFlushMode(false);
println("\t{}.f64 = float(1.0 / {}.f64);", f(insn.operands[0]), f(insn.operands[1]));
break;
case PPC_INST_FRSP:
printSetFlushMode(false);
println("\t{}.f64 = double(float({}.f64));", f(insn.operands[0]), f(insn.operands[1]));
break;
case PPC_INST_FSEL:
printSetFlushMode(false);
println("\t{}.f64 = {}.f64 >= 0.0 ? {}.f64 : {}.f64;", f(insn.operands[0]), f(insn.operands[1]), f(insn.operands[2]), f(insn.operands[3]));
break;
case PPC_INST_FSQRT:
printSetFlushMode(false);
println("\t{}.f64 = sqrt({}.f64);", f(insn.operands[0]), f(insn.operands[1]));
break;
case PPC_INST_FSQRTS:
printSetFlushMode(false);
println("\t{}.f64 = double(float(sqrt({}.f64)));", f(insn.operands[0]), f(insn.operands[1]));
break;
case PPC_INST_FSUB:
printSetFlushMode(false);
println("\t{}.f64 = {}.f64 - {}.f64;", f(insn.operands[0]), f(insn.operands[1]), f(insn.operands[2]));
break;
case PPC_INST_FSUBS:
printSetFlushMode(false);
println("\t{}.f64 = double(float({}.f64 - {}.f64));", f(insn.operands[0]), f(insn.operands[1]), f(insn.operands[2]));
break;
case PPC_INST_LBZ:
print("\t{}.u64 = PPC_LOAD_U8(", r(insn.operands[0]));
if (insn.operands[2] != 0)
print("{}.u32 + ", r(insn.operands[2]));
println("{});", int32_t(insn.operands[1]));
break;
case PPC_INST_LBZU:
println("\t{} = {} + {}.u32;", ea(), int32_t(insn.operands[1]), r(insn.operands[2]));
println("\t{}.u64 = PPC_LOAD_U8({});", r(insn.operands[0]), ea());
println("\t{}.u32 = {};", r(insn.operands[2]), ea());
break;
case PPC_INST_LBZX:
print("\t{}.u64 = PPC_LOAD_U8(", r(insn.operands[0]));
if (insn.operands[1] != 0)
print("{}.u32 + ", r(insn.operands[1]));
println("{}.u32);", r(insn.operands[2]));
break;
case PPC_INST_LD:
print("\t{}.u64 = PPC_LOAD_U64(", r(insn.operands[0]));
if (insn.operands[2] != 0)
print("{}.u32 + ", r(insn.operands[2]));
println("{});", int32_t(insn.operands[1]));
break;
case PPC_INST_LDARX:
print("\t{}.u64 = *(uint64_t*)(base + ", reserved());
if (insn.operands[1] != 0)
print("{}.u32 + ", r(insn.operands[1]));
println("{}.u32);", r(insn.operands[2]));
println("\t{}.u64 = __builtin_bswap64({}.u64);", r(insn.operands[0]), reserved());
break;
case PPC_INST_LDU:
println("\t{} = {} + {}.u32;", ea(), int32_t(insn.operands[1]), r(insn.operands[2]));
println("\t{}.u64 = PPC_LOAD_U64({});", r(insn.operands[0]), ea());
println("\t{}.u32 = {};", r(insn.operands[2]), ea());
break;
case PPC_INST_LDX:
print("\t{}.u64 = PPC_LOAD_U64(", r(insn.operands[0]));
if (insn.operands[1] != 0)
print("{}.u32 + ", r(insn.operands[1]));
println("{}.u32);", r(insn.operands[2]));
break;
case PPC_INST_LFD:
printSetFlushMode(false);
print("\t{}.u64 = PPC_LOAD_U64(", f(insn.operands[0]));
if (insn.operands[2] != 0)
print("{}.u32 + ", r(insn.operands[2]));
println("{});", int32_t(insn.operands[1]));
break;
case PPC_INST_LFDX:
printSetFlushMode(false);
print("\t{}.u64 = PPC_LOAD_U64(", f(insn.operands[0]));
if (insn.operands[1] != 0)
print("{}.u32 + ", r(insn.operands[1]));
println("{}.u32);", r(insn.operands[2]));
break;
case PPC_INST_LFS:
printSetFlushMode(false);
print("\t{}.u32 = PPC_LOAD_U32(", temp());
if (insn.operands[2] != 0)
print("{}.u32 + ", r(insn.operands[2]));
println("{});", int32_t(insn.operands[1]));
println("\t{}.f64 = double({}.f32);", f(insn.operands[0]), temp());
break;
case PPC_INST_LFSX:
printSetFlushMode(false);
print("\t{}.u32 = PPC_LOAD_U32(", temp());
if (insn.operands[1] != 0)
print("{}.u32 + ", r(insn.operands[1]));
println("{}.u32);", r(insn.operands[2]));
println("\t{}.f64 = double({}.f32);", f(insn.operands[0]), temp());
break;
case PPC_INST_LHA:
print("\t{}.s64 = int16_t(PPC_LOAD_U16(", r(insn.operands[0]));
if (insn.operands[2] != 0)
print("{}.u32 + ", r(insn.operands[2]));
println("{}));", int32_t(insn.operands[1]));
break;
case PPC_INST_LHAX:
print("\t{}.s64 = int16_t(PPC_LOAD_U16(", r(insn.operands[0]));
if (insn.operands[1] != 0)
print("{}.u32 + ", r(insn.operands[1]));
println("{}.u32));", r(insn.operands[2]));
break;
case PPC_INST_LHZ:
print("\t{}.u64 = PPC_LOAD_U16(", r(insn.operands[0]));
if (insn.operands[2] != 0)
print("{}.u32 + ", r(insn.operands[2]));
println("{});", int32_t(insn.operands[1]));
break;
case PPC_INST_LHZX:
print("\t{}.u64 = PPC_LOAD_U16(", r(insn.operands[0]));
if (insn.operands[1] != 0)
print("{}.u32 + ", r(insn.operands[1]));
println("{}.u32);", r(insn.operands[2]));
break;
case PPC_INST_LI:
println("\t{}.s64 = {};", r(insn.operands[0]), int32_t(insn.operands[1]));
break;
case PPC_INST_LIS:
println("\t{}.s64 = {};", r(insn.operands[0]), int32_t(insn.operands[1] << 16));
break;
case PPC_INST_LVEWX:
case PPC_INST_LVEWX128:
case PPC_INST_LVX:
case PPC_INST_LVX128:
// NOTE: for endian swapping, we reverse the whole vector instead of individual elements.
// this is accounted for in every instruction (eg. dp3 sums yzw instead of xyz)
print("\t_mm_store_si128((__m128i*){}.u8, _mm_shuffle_epi8(_mm_load_si128((__m128i*)(base + ((", v(insn.operands[0]));
if (insn.operands[1] != 0)
print("{}.u32 + ", r(insn.operands[1]));
println("{}.u32) & ~0xF))), _mm_load_si128((__m128i*)VectorMaskL)));", r(insn.operands[2]));
break;
case PPC_INST_LVLX:
case PPC_INST_LVLX128:
print("\t{}.u32 = ", temp());
if (insn.operands[1] != 0)
print("{}.u32 + ", r(insn.operands[1]));
println("{}.u32;", r(insn.operands[2]));
println("\t_mm_store_si128((__m128i*){}.u8, _mm_shuffle_epi8(_mm_load_si128((__m128i*)(base + ({}.u32 & ~0xF))), _mm_load_si128((__m128i*)&VectorMaskL[({}.u32 & 0xF) * 16])));", v(insn.operands[0]), temp(), temp());
break;
case PPC_INST_LVRX:
case PPC_INST_LVRX128:
print("\t{}.u32 = ", temp());
if (insn.operands[1] != 0)
print("{}.u32 + ", r(insn.operands[1]));
println("{}.u32;", r(insn.operands[2]));
println("\t_mm_store_si128((__m128i*){}.u8, {}.u32 & 0xF ? _mm_shuffle_epi8(_mm_load_si128((__m128i*)(base + ({}.u32 & ~0xF))), _mm_load_si128((__m128i*)&VectorMaskR[({}.u32 & 0xF) * 16])) : _mm_setzero_si128());", v(insn.operands[0]), temp(), temp(), temp());
break;
case PPC_INST_LVSL:
print("\t{}.u32 = ", temp());
if (insn.operands[1] != 0)
print("{}.u32 + ", r(insn.operands[1]));
println("{}.u32;", r(insn.operands[2]));
println("\t_mm_store_si128((__m128i*){}.u8, _mm_load_si128((__m128i*)&VectorShiftTableL[({}.u32 & 0xF) * 16]));", v(insn.operands[0]), temp());
break;
case PPC_INST_LVSR:
print("\t{}.u32 = ", temp());
if (insn.operands[1] != 0)
print("{}.u32 + ", r(insn.operands[1]));
println("{}.u32;", r(insn.operands[2]));
println("\t_mm_store_si128((__m128i*){}.u8, _mm_load_si128((__m128i*)&VectorShiftTableR[({}.u32 & 0xF) * 16]));", v(insn.operands[0]), temp());
break;
case PPC_INST_LWA:
print("\t{}.s64 = int32_t(PPC_LOAD_U32(", r(insn.operands[0]));
if (insn.operands[2] != 0)
print("{}.u32 + ", r(insn.operands[2]));
println("{}));", int32_t(insn.operands[1]));
break;
case PPC_INST_LWARX:
print("\t{}.u32 = *(uint32_t*)(base + ", reserved());
if (insn.operands[1] != 0)
print("{}.u32 + ", r(insn.operands[1]));
println("{}.u32);", r(insn.operands[2]));
println("\t{}.u64 = __builtin_bswap32({}.u32);", r(insn.operands[0]), reserved());
break;
case PPC_INST_LWAX:
print("\t{}.s64 = int32_t(PPC_LOAD_U32(", r(insn.operands[0]));
if (insn.operands[1] != 0)
print("{}.u32 + ", r(insn.operands[1]));
println("{}.u32));", r(insn.operands[2]));
break;
case PPC_INST_LWBRX:
print("\t{}.u64 = __builtin_bswap32(PPC_LOAD_U32(", r(insn.operands[0]));
if (insn.operands[1] != 0)
print("{}.u32 + ", r(insn.operands[1]));
println("{}.u32));", r(insn.operands[2]));
break;
case PPC_INST_LWSYNC:
// no op
break;
case PPC_INST_LWZ:
print("\t{}.u64 = PPC_LOAD_U32(", r(insn.operands[0]));
if (insn.operands[2] != 0)
print("{}.u32 + ", r(insn.operands[2]));
println("{});", int32_t(insn.operands[1]));
break;
case PPC_INST_LWZU:
println("\t{} = {} + {}.u32;", ea(), int32_t(insn.operands[1]), r(insn.operands[2]));
println("\t{}.u64 = PPC_LOAD_U32({});", r(insn.operands[0]), ea());
println("\t{}.u32 = {};", r(insn.operands[2]), ea());
break;
case PPC_INST_LWZX:
print("\t{}.u64 = PPC_LOAD_U32(", r(insn.operands[0]));
if (insn.operands[1] != 0)
print("{}.u32 + ", r(insn.operands[1]));
println("{}.u32);", r(insn.operands[2]));
break;
case PPC_INST_MFCR:
for (size_t i = 0; i < 32; i++)
{
constexpr std::string_view fields[] = { "lt", "gt", "eq", "so" };
println("\t{}.u64 {}= {}.{} ? 0x{:X} : 0;", r(insn.operands[0]), i == 0 ? "" : "|", cr(i / 4), fields[i % 4], 1u << (31 - i));
}
break;
case PPC_INST_MFFS:
println("\t{}.u64 = ctx.fpscr.loadFromHost();", r(insn.operands[0]));
break;
case PPC_INST_MFLR:
if (!config.skipLr)
println("\t{}.u64 = ctx.lr;", r(insn.operands[0]));
break;
case PPC_INST_MFMSR:
if (!config.skipMsr)
println("\t{}.u64 = ctx.msr;", r(insn.operands[0]));
break;
case PPC_INST_MFOCRF:
// TODO: don't hardcode to cr6
println("\t{}.u64 = ({}.lt << 7) | ({}.gt << 6) | ({}.eq << 5) | ({}.so << 4);", r(insn.operands[0]), cr(6), cr(6), cr(6), cr(6));
break;
case PPC_INST_MFTB:
println("\t{}.u64 = __rdtsc();", r(insn.operands[0]));
break;
case PPC_INST_MR:
println("\t{}.u64 = {}.u64;", r(insn.operands[0]), r(insn.operands[1]));
if (strchr(insn.opcode->name, '.'))
println("\t{}.compare<int32_t>({}.s32, 0, {});", cr(0), r(insn.operands[0]), xer());
break;
case PPC_INST_MTCR:
for (size_t i = 0; i < 32; i++)
{
constexpr std::string_view fields[] = { "lt", "gt", "eq", "so" };
println("\t{}.{} = ({}.u32 & 0x{:X}) != 0;", cr(i / 4), fields[i % 4], r(insn.operands[0]), 1u << (31 - i));
}
break;
case PPC_INST_MTCTR:
println("\t{}.u64 = {}.u64;", ctr(), r(insn.operands[0]));
break;
case PPC_INST_MTFSF:
println("\tctx.fpscr.storeFromGuest({}.u32);", f(insn.operands[1]));
break;
case PPC_INST_MTLR:
if (!config.skipLr)
println("\tctx.lr = {}.u64;", r(insn.operands[0]));
break;
case PPC_INST_MTMSRD:
if (!config.skipMsr)
println("\tctx.msr = ({}.u32 & 0x8020) | (ctx.msr & ~0x8020);", r(insn.operands[0]));
break;
case PPC_INST_MTXER:
println("\t{}.so = ({}.u64 & 0x80000000) != 0;", xer(), r(insn.operands[0]));
println("\t{}.ov = ({}.u64 & 0x40000000) != 0;", xer(), r(insn.operands[0]));
println("\t{}.ca = ({}.u64 & 0x20000000) != 0;", xer(), r(insn.operands[0]));
break;
case PPC_INST_MULHW:
println("\t{}.s64 = (int64_t({}.s32) * int64_t({}.s32)) >> 32;", r(insn.operands[0]), r(insn.operands[1]), r(insn.operands[2]));
break;
case PPC_INST_MULHWU:
println("\t{}.u64 = (uint64_t({}.u32) * uint64_t({}.u32)) >> 32;", r(insn.operands[0]), r(insn.operands[1]), r(insn.operands[2]));
if (strchr(insn.opcode->name, '.'))
println("\t{}.compare<int32_t>({}.s32, 0, {});", cr(0), r(insn.operands[0]), xer());
break;
case PPC_INST_MULLD:
println("\t{}.s64 = {}.s64 * {}.s64;", r(insn.operands[0]), r(insn.operands[1]), r(insn.operands[2]));
break;
case PPC_INST_MULLI:
println("\t{}.s64 = {}.s64 * {};", r(insn.operands[0]), r(insn.operands[1]), int32_t(insn.operands[2]));
break;
case PPC_INST_MULLW:
println("\t{}.s64 = int64_t({}.s32) * int64_t({}.s32);", r(insn.operands[0]), r(insn.operands[1]), r(insn.operands[2]));
if (strchr(insn.opcode->name, '.'))
println("\t{}.compare<int32_t>({}.s32, 0, {});", cr(0), r(insn.operands[0]), xer());
break;
case PPC_INST_NAND:
println("\t{}.u64 = ~({}.u64 & {}.u64);", r(insn.operands[0]), r(insn.operands[1]), r(insn.operands[2]));
break;
case PPC_INST_NEG:
println("\t{}.s64 = -{}.s64;", r(insn.operands[0]), r(insn.operands[1]));
if (strchr(insn.opcode->name, '.'))
println("\t{}.compare<int32_t>({}.s32, 0, {});", cr(0), r(insn.operands[0]), xer());
break;
case PPC_INST_NOP:
// no op
break;
case PPC_INST_NOR:
println("\t{}.u64 = ~({}.u64 | {}.u64);", r(insn.operands[0]), r(insn.operands[1]), r(insn.operands[2]));
break;
case PPC_INST_NOT:
println("\t{}.u64 = ~{}.u64;", r(insn.operands[0]), r(insn.operands[1]));
if (strchr(insn.opcode->name, '.'))
println("\t{}.compare<int32_t>({}.s32, 0, {});", cr(0), r(insn.operands[0]), xer());
break;
case PPC_INST_OR:
println("\t{}.u64 = {}.u64 | {}.u64;", r(insn.operands[0]), r(insn.operands[1]), r(insn.operands[2]));
if (strchr(insn.opcode->name, '.'))
println("\t{}.compare<int32_t>({}.s32, 0, {});", cr(0), r(insn.operands[0]), xer());
break;
case PPC_INST_ORC:
println("\t{}.u64 = {}.u64 | ~{}.u64;", r(insn.operands[0]), r(insn.operands[1]), r(insn.operands[2]));
break;
case PPC_INST_ORI:
println("\t{}.u64 = {}.u64 | {};", r(insn.operands[0]), r(insn.operands[1]), insn.operands[2]);
break;
case PPC_INST_ORIS:
println("\t{}.u64 = {}.u64 | {};", r(insn.operands[0]), r(insn.operands[1]), insn.operands[2] << 16);
break;
case PPC_INST_RLDICL:
println("\t{}.u64 = _rotl64({}.u64, {}) & 0x{:X};", r(insn.operands[0]), r(insn.operands[1]), insn.operands[2], ComputeMask(insn.operands[3], 63));
break;
case PPC_INST_RLDICR:
println("\t{}.u64 = _rotl64({}.u64, {}) & 0x{:X};", r(insn.operands[0]), r(insn.operands[1]), insn.operands[2], ComputeMask(0, insn.operands[3]));
break;
case PPC_INST_RLDIMI:
{
const uint64_t mask = ComputeMask(insn.operands[3], ~insn.operands[2]);
println("\t{}.u64 = (_rotl64({}.u64, {}) & 0x{:X}) | ({}.u64 & 0x{:X});", r(insn.operands[0]), r(insn.operands[1]), insn.operands[2], mask, r(insn.operands[0]), ~mask);
break;
}
case PPC_INST_RLWIMI:
{
const uint64_t mask = ComputeMask(insn.operands[3] + 32, insn.operands[4] + 32);
println("\t{}.u64 = (_rotl({}.u32, {}) & 0x{:X}) | ({}.u64 & 0x{:X});", r(insn.operands[0]), r(insn.operands[1]), insn.operands[2], mask, r(insn.operands[0]), ~mask);
break;
}
case PPC_INST_RLWINM:
println("\t{}.u64 = _rotl64({}.u32 | ({}.u64 << 32), {}) & 0x{:X};", r(insn.operands[0]), r(insn.operands[1]), r(insn.operands[1]), insn.operands[2], ComputeMask(insn.operands[3] + 32, insn.operands[4] + 32));
if (strchr(insn.opcode->name, '.'))
println("\t{}.compare<int32_t>({}.s32, 0, {});", cr(0), r(insn.operands[0]), xer());
break;
case PPC_INST_ROTLDI:
println("\t{}.u64 = _rotl64({}.u64, {});", r(insn.operands[0]), r(insn.operands[1]), insn.operands[2]);
break;
case PPC_INST_ROTLW:
println("\t{}.u64 = _rotl({}.u32, {}.u8 & 0x1F);", r(insn.operands[0]), r(insn.operands[1]), r(insn.operands[2]));
break;
case PPC_INST_ROTLWI:
println("\t{}.u64 = _rotl({}.u32, {});", r(insn.operands[0]), r(insn.operands[1]), insn.operands[2]);
if (strchr(insn.opcode->name, '.'))
println("\t{}.compare<int32_t>({}.s32, 0, {});", cr(0), r(insn.operands[0]), xer());
break;
case PPC_INST_SLD:
println("\t{}.u64 = {}.u8 & 0x40 ? 0 : ({}.u64 << ({}.u8 & 0x7F));", r(insn.operands[0]), r(insn.operands[2]), r(insn.operands[1]), r(insn.operands[2]));
break;
case PPC_INST_SLW:
println("\t{}.u64 = {}.u8 & 0x20 ? 0 : ({}.u32 << ({}.u8 & 0x3F));", r(insn.operands[0]), r(insn.operands[2]), r(insn.operands[1]), r(insn.operands[2]));
if (strchr(insn.opcode->name, '.'))
println("\t{}.compare<int32_t>({}.s32, 0, {});", cr(0), r(insn.operands[0]), xer());
break;
case PPC_INST_SRAD:
println("\t{}.u64 = {}.u64 & 0x7F;", temp(), r(insn.operands[2]));
println("\tif ({}.u64 > 0x3F) {}.u64 = 0x3F;", temp(), temp());
println("\t{}.ca = ({}.s64 < 0) & ((({}.s64 >> {}.u64) << {}.u64) != {}.s64);", xer(), r(insn.operands[1]), r(insn.operands[1]), temp(), temp(), r(insn.operands[1]));
println("\t{}.s64 = {}.s64 >> {}.u64;", r(insn.operands[0]), r(insn.operands[1]), temp());
break;
case PPC_INST_SRADI:
if (insn.operands[2] != 0)
{
println("\t{}.ca = ({}.s64 < 0) & (({}.u64 & 0x{:X}) != 0);", xer(), r(insn.operands[1]), r(insn.operands[1]), ComputeMask(64 - insn.operands[2], 63));
println("\t{}.s64 = {}.s64 >> {};", r(insn.operands[0]), r(insn.operands[1]), insn.operands[2]);
}
else
{
println("\t{}.ca = 0;", xer());
println("\t{}.s64 = {}.s64;", r(insn.operands[0]), r(insn.operands[1]));
}
break;
case PPC_INST_SRAW:
println("\t{}.u32 = {}.u32 & 0x3F;", temp(), r(insn.operands[2]));
println("\tif ({}.u32 > 0x1F) {}.u32 = 0x1F;", temp(), temp());
println("\t{}.ca = ({}.s32 < 0) & ((({}.s32 >> {}.u32) << {}.u32) != {}.s32);", xer(), r(insn.operands[1]), r(insn.operands[1]), temp(), temp(), r(insn.operands[1]));
println("\t{}.s64 = {}.s32 >> {}.u32;", r(insn.operands[0]), r(insn.operands[1]), temp());
if (strchr(insn.opcode->name, '.'))
println("\t{}.compare<int32_t>({}.s32, 0, {});", cr(0), r(insn.operands[0]), xer());
break;
case PPC_INST_SRAWI:
if (insn.operands[2] != 0)
{
println("\t{}.ca = ({}.s32 < 0) & (({}.u32 & 0x{:X}) != 0);", xer(), r(insn.operands[1]), r(insn.operands[1]), ComputeMask(64 - insn.operands[2], 63));
println("\t{}.s64 = {}.s32 >> {};", r(insn.operands[0]), r(insn.operands[1]), insn.operands[2]);
}
else
{
println("\t{}.ca = 0;", xer());
println("\t{}.s64 = {}.s32;", r(insn.operands[0]), r(insn.operands[1]));
}
if (strchr(insn.opcode->name, '.'))
println("\t{}.compare<int32_t>({}.s32, 0, {});", cr(0), r(insn.operands[0]), xer());
break;
case PPC_INST_SRD:
println("\t{}.u64 = {}.u8 & 0x40 ? 0 : ({}.u64 >> ({}.u8 & 0x7F));", r(insn.operands[0]), r(insn.operands[2]), r(insn.operands[1]), r(insn.operands[2]));
break;
case PPC_INST_SRW:
println("\t{}.u64 = {}.u8 & 0x20 ? 0 : ({}.u32 >> ({}.u8 & 0x3F));", r(insn.operands[0]), r(insn.operands[2]), r(insn.operands[1]), r(insn.operands[2]));
if (strchr(insn.opcode->name, '.'))
println("\t{}.compare<int32_t>({}.s32, 0, {});", cr(0), r(insn.operands[0]), xer());
break;
case PPC_INST_STB:
print("{}", mmioStore() ? "\tPPC_MM_STORE_U8(" : "\tPPC_STORE_U8(");
if (insn.operands[2] != 0)
print("{}.u32 + ", r(insn.operands[2]));
println("{}, {}.u8);", int32_t(insn.operands[1]), r(insn.operands[0]));
break;
case PPC_INST_STBU:
println("\t{} = {} + {}.u32;", ea(), int32_t(insn.operands[1]), r(insn.operands[2]));
println("\tPPC_STORE_U8({}, {}.u8);", ea(), r(insn.operands[0]));
println("\t{}.u32 = {};", r(insn.operands[2]), ea());
break;
case PPC_INST_STBX:
print("{}", mmioStore() ? "\tPPC_MM_STORE_U8(" : "\tPPC_STORE_U8(");
if (insn.operands[1] != 0)
print("{}.u32 + ", r(insn.operands[1]));
println("{}.u32, {}.u8);", r(insn.operands[2]), r(insn.operands[0]));
break;
case PPC_INST_STD:
print("{}", mmioStore() ? "\tPPC_MM_STORE_U64(" : "\tPPC_STORE_U64(");
if (insn.operands[2] != 0)
print("{}.u32 + ", r(insn.operands[2]));
println("{}, {}.u64);", int32_t(insn.operands[1]), r(insn.operands[0]));
break;
case PPC_INST_STDCX:
println("\t{}.lt = 0;", cr(0));
println("\t{}.gt = 0;", cr(0));
print("\t{}.eq = _InterlockedCompareExchange64(reinterpret_cast<__int64*>(base + ", cr(0));
if (insn.operands[1] != 0)
print("{}.u32 + ", r(insn.operands[1]));
println("{}.u32), __builtin_bswap64({}.s64), {}.s64) == {}.s64;", r(insn.operands[2]), r(insn.operands[0]), reserved(), reserved());
println("\t{}.so = {}.so;", cr(0), xer());
break;
case PPC_INST_STDU:
println("\t{} = {} + {}.u32;", ea(), int32_t(insn.operands[1]), r(insn.operands[2]));
println("\tPPC_STORE_U64({}, {}.u64);", ea(), r(insn.operands[0]));
println("\t{}.u32 = {};", r(insn.operands[2]), ea());
break;
case PPC_INST_STDX:
print("{}", mmioStore() ? "\tPPC_MM_STORE_U64(" : "\tPPC_STORE_U64(");
if (insn.operands[1] != 0)
print("{}.u32 + ", r(insn.operands[1]));
println("{}.u32, {}.u64);", r(insn.operands[2]), r(insn.operands[0]));
break;
case PPC_INST_STFD:
printSetFlushMode(false);
print("{}", mmioStore() ? "\tPPC_MM_STORE_U64(" : "\tPPC_STORE_U64(");
if (insn.operands[2] != 0)
print("{}.u32 + ", r(insn.operands[2]));
println("{}, {}.u64);", int32_t(insn.operands[1]), f(insn.operands[0]));
break;
case PPC_INST_STFDX:
printSetFlushMode(false);
print("{}", mmioStore() ? "\tPPC_MM_STORE_U64(" : "\tPPC_STORE_U64(");
if (insn.operands[1] != 0)
print("{}.u32 + ", r(insn.operands[1]));
println("{}.u32, {}.u64);", r(insn.operands[2]), f(insn.operands[0]));
break;
case PPC_INST_STFIWX:
printSetFlushMode(false);
print("{}", mmioStore() ? "\tPPC_MM_STORE_U32(" : "\tPPC_STORE_U32(");
if (insn.operands[1] != 0)
print("{}.u32 + ", r(insn.operands[1]));
println("{}.u32, {}.u32);", r(insn.operands[2]), f(insn.operands[0]));
break;
case PPC_INST_STFS:
printSetFlushMode(false);
println("\t{}.f32 = float({}.f64);", temp(), f(insn.operands[0]));
print("{}", mmioStore() ? "\tPPC_MM_STORE_U32(" : "\tPPC_STORE_U32(");
if (insn.operands[2] != 0)
print("{}.u32 + ", r(insn.operands[2]));
println("{}, {}.u32);", int32_t(insn.operands[1]), temp());
break;
case PPC_INST_STFSX:
printSetFlushMode(false);
println("\t{}.f32 = float({}.f64);", temp(), f(insn.operands[0]));
print("{}", mmioStore() ? "\tPPC_MM_STORE_U32(" : "\tPPC_STORE_U32(");
if (insn.operands[1] != 0)
print("{}.u32 + ", r(insn.operands[1]));
println("{}.u32, {}.u32);", r(insn.operands[2]), temp());
break;
case PPC_INST_STH:
print("{}", mmioStore() ? "\tPPC_MM_STORE_U16(" : "\tPPC_STORE_U16(");
if (insn.operands[2] != 0)
print("{}.u32 + ", r(insn.operands[2]));
println("{}, {}.u16);", int32_t(insn.operands[1]), r(insn.operands[0]));
break;
case PPC_INST_STHBRX:
print("{}", mmioStore() ? "\tPPC_MM_STORE_U16(" : "\tPPC_STORE_U16(");
if (insn.operands[1] != 0)
print("{}.u32 + ", r(insn.operands[1]));
println("{}.u32, __builtin_bswap16({}.u16));", r(insn.operands[2]), r(insn.operands[0]));
break;
case PPC_INST_STHX:
print("{}", mmioStore() ? "\tPPC_MM_STORE_U16(" : "\tPPC_STORE_U16(");
if (insn.operands[1] != 0)
print("{}.u32 + ", r(insn.operands[1]));
println("{}.u32, {}.u16);", r(insn.operands[2]), r(insn.operands[0]));
break;
case PPC_INST_STVEHX:
// TODO: vectorize
// NOTE: accounting for the full vector reversal here
print("\t{} = (", ea());
if (insn.operands[1] != 0)
print("{}.u32 + ", r(insn.operands[1]));
println("{}.u32) & ~0x1;", r(insn.operands[2]));
println("\tPPC_STORE_U16(ea, {}.u16[7 - (({} & 0xF) >> 1)]);", v(insn.operands[0]), ea());
break;
case PPC_INST_STVEWX:
case PPC_INST_STVEWX128:
// TODO: vectorize
// NOTE: accounting for the full vector reversal here
print("\t{} = (", ea());
if (insn.operands[1] != 0)
print("{}.u32 + ", r(insn.operands[1]));
println("{}.u32) & ~0x3;", r(insn.operands[2]));
println("\tPPC_STORE_U32(ea, {}.u32[3 - (({} & 0xF) >> 2)]);", v(insn.operands[0]), ea());
break;
case PPC_INST_STVLX:
case PPC_INST_STVLX128:
// TODO: vectorize
// NOTE: accounting for the full vector reversal here
print("\t{} = ", ea());
if (insn.operands[1] != 0)
print("{}.u32 + ", r(insn.operands[1]));
println("{}.u32;", r(insn.operands[2]));
println("\tfor (size_t i = 0; i < (16 - ({} & 0xF)); i++)", ea());
println("\t\tPPC_STORE_U8({} + i, {}.u8[15 - i]);", ea(), v(insn.operands[0]));
break;
case PPC_INST_STVRX:
case PPC_INST_STVRX128:
// TODO: vectorize
// NOTE: accounting for the full vector reversal here
print("\t{} = ", ea());
if (insn.operands[1] != 0)
print("{}.u32 + ", r(insn.operands[1]));
println("{}.u32;", r(insn.operands[2]));
println("\tfor (size_t i = 0; i < ({} & 0xF); i++)", ea());
println("\t\tPPC_STORE_U8({} - i - 1, {}.u8[i]);", ea(), v(insn.operands[0]));
break;
case PPC_INST_STVX:
case PPC_INST_STVX128:
print("\t_mm_store_si128((__m128i*)(base + ((");
if (insn.operands[1] != 0)
print("{}.u32 + ", r(insn.operands[1]));
println("{}.u32) & ~0xF)), _mm_shuffle_epi8(_mm_load_si128((__m128i*){}.u8), _mm_load_si128((__m128i*)VectorMaskL)));", r(insn.operands[2]), v(insn.operands[0]));
break;
case PPC_INST_STW:
print("{}", mmioStore() ? "\tPPC_MM_STORE_U32(" : "\tPPC_STORE_U32(");
if (insn.operands[2] != 0)
print("{}.u32 + ", r(insn.operands[2]));
println("{}, {}.u32);", int32_t(insn.operands[1]), r(insn.operands[0]));
break;
case PPC_INST_STWBRX:
print("{}", mmioStore() ? "\tPPC_MM_STORE_U32(" : "\tPPC_STORE_U32(");
if (insn.operands[1] != 0)
print("{}.u32 + ", r(insn.operands[1]));
println("{}.u32, __builtin_bswap32({}.u32));", r(insn.operands[2]), r(insn.operands[0]));
break;
case PPC_INST_STWCX:
println("\t{}.lt = 0;", cr(0));
println("\t{}.gt = 0;", cr(0));
print("\t{}.eq = _InterlockedCompareExchange(reinterpret_cast<long*>(base + ", cr(0));
if (insn.operands[1] != 0)
print("{}.u32 + ", r(insn.operands[1]));
println("{}.u32), __builtin_bswap32({}.s32), {}.s32) == {}.s32;", r(insn.operands[2]), r(insn.operands[0]), reserved(), reserved());
println("\t{}.so = {}.so;", cr(0), xer());
break;
case PPC_INST_STWU:
println("\t{} = {} + {}.u32;", ea(), int32_t(insn.operands[1]), r(insn.operands[2]));
println("\tPPC_STORE_U32({}, {}.u32);", ea(), r(insn.operands[0]));
println("\t{}.u32 = {};", r(insn.operands[2]), ea());
break;
case PPC_INST_STWUX:
println("\t{} = {}.u32 + {}.u32;", ea(), r(insn.operands[1]), r(insn.operands[2]));
println("\tPPC_STORE_U32({}, {}.u32);", ea(), r(insn.operands[0]));
println("\t{}.u32 = {};", r(insn.operands[1]), ea());
break;
case PPC_INST_STWX:
print("{}", mmioStore() ? "\tPPC_MM_STORE_U32(" : "\tPPC_STORE_U32(");
if (insn.operands[1] != 0)
print("{}.u32 + ", r(insn.operands[1]));
println("{}.u32, {}.u32);", r(insn.operands[2]), r(insn.operands[0]));
break;
case PPC_INST_SUBF:
println("\t{}.s64 = {}.s64 - {}.s64;", r(insn.operands[0]), r(insn.operands[2]), r(insn.operands[1]));
if (strchr(insn.opcode->name, '.'))
println("\t{}.compare<int32_t>({}.s32, 0, {});", cr(0), r(insn.operands[0]), xer());
break;
case PPC_INST_SUBFC:
println("\t{}.ca = {}.u32 >= {}.u32;", xer(), r(insn.operands[2]), r(insn.operands[1]));
println("\t{}.s64 = {}.s64 - {}.s64;", r(insn.operands[0]), r(insn.operands[2]), r(insn.operands[1]));
if (strchr(insn.opcode->name, '.'))
println("\t{}.compare<int32_t>({}.s32, 0, {});", cr(0), r(insn.operands[0]), xer());
break;
case PPC_INST_SUBFE:
println("\t{}.u8 = (~{}.u32 + {}.u32 < ~{}.u32) | (~{}.u32 + {}.u32 + {}.ca < {}.ca);", temp(), r(insn.operands[1]), r(insn.operands[2]), r(insn.operands[1]), r(insn.operands[1]), r(insn.operands[2]), xer(), xer());
println("\t{}.u64 = ~{}.u64 + {}.u64 + {}.ca;", r(insn.operands[0]), r(insn.operands[1]), r(insn.operands[2]), xer());
println("\t{}.ca = {}.u8;", xer(), temp());
if (strchr(insn.opcode->name, '.'))
println("\t{}.compare<int32_t>({}.s32, 0, {});", cr(0), r(insn.operands[0]), xer());
break;
case PPC_INST_SUBFIC:
println("\t{}.ca = {}.u32 <= {};", xer(), r(insn.operands[1]), insn.operands[2]);
println("\t{}.s64 = {} - {}.s64;", r(insn.operands[0]), int32_t(insn.operands[2]), r(insn.operands[1]));
break;
case PPC_INST_SYNC:
// no op
break;
case PPC_INST_TDLGEI:
// no op
break;
case PPC_INST_TDLLEI:
// no op
break;
case PPC_INST_TWI:
// no op
break;
case PPC_INST_TWLGEI:
// no op
break;
case PPC_INST_TWLLEI:
// no op
break;
case PPC_INST_VADDFP:
case PPC_INST_VADDFP128:
printSetFlushMode(true);
println("\t_mm_store_ps({}.f32, _mm_add_ps(_mm_load_ps({}.f32), _mm_load_ps({}.f32)));", v(insn.operands[0]), v(insn.operands[1]), v(insn.operands[2]));
break;
case PPC_INST_VADDSHS:
println("\t_mm_store_si128((__m128i*){}.s16, _mm_adds_epi16(_mm_load_si128((__m128i*){}.s16), _mm_load_si128((__m128i*){}.s16)));", v(insn.operands[0]), v(insn.operands[1]), v(insn.operands[2]));
break;
case PPC_INST_VADDUBM:
println("\t_mm_store_si128((__m128i*){}.u8, _mm_add_epi8(_mm_load_si128((__m128i*){}.u8), _mm_load_si128((__m128i*){}.u8)));", v(insn.operands[0]), v(insn.operands[1]), v(insn.operands[2]));
break;
case PPC_INST_VADDUBS:
println("\t_mm_store_si128((__m128i*){}.u8, _mm_adds_epu8(_mm_load_si128((__m128i*){}.u8), _mm_load_si128((__m128i*){}.u8)));", v(insn.operands[0]), v(insn.operands[1]), v(insn.operands[2]));
break;
case PPC_INST_VADDUHM:
println("\t_mm_store_si128((__m128i*){}.u16, _mm_add_epi16(_mm_load_si128((__m128i*){}.u16), _mm_load_si128((__m128i*){}.u16)));", v(insn.operands[0]), v(insn.operands[1]), v(insn.operands[2]));
break;
case PPC_INST_VADDUWM:
println("\t_mm_store_si128((__m128i*){}.u32, _mm_add_epi32(_mm_load_si128((__m128i*){}.u32), _mm_load_si128((__m128i*){}.u32)));", v(insn.operands[0]), v(insn.operands[1]), v(insn.operands[2]));
break;
case PPC_INST_VADDUWS:
println("\t_mm_store_si128((__m128i*){}.u32, _mm_adds_epu32(_mm_load_si128((__m128i*){}.u32), _mm_load_si128((__m128i*){}.u32)));", v(insn.operands[0]), v(insn.operands[1]), v(insn.operands[2]));
break;
case PPC_INST_VAND:
case PPC_INST_VAND128:
println("\t_mm_store_si128((__m128i*){}.u8, _mm_and_si128(_mm_load_si128((__m128i*){}.u8), _mm_load_si128((__m128i*){}.u8)));", v(insn.operands[0]), v(insn.operands[1]), v(insn.operands[2]));
break;
case PPC_INST_VANDC128:
println("\t_mm_store_si128((__m128i*){}.u8, _mm_andnot_si128(_mm_load_si128((__m128i*){}.u8), _mm_load_si128((__m128i*){}.u8)));", v(insn.operands[0]), v(insn.operands[2]), v(insn.operands[1]));
break;
case PPC_INST_VAVGSB:
println("\t_mm_store_si128((__m128i*){}.u8, _mm_avg_epi8(_mm_load_si128((__m128i*){}.u8), _mm_load_si128((__m128i*){}.u8)));", v(insn.operands[0]), v(insn.operands[1]), v(insn.operands[2]));
break;
case PPC_INST_VAVGSH:
println("\t_mm_store_si128((__m128i*){}.u8, _mm_avg_epi16(_mm_load_si128((__m128i*){}.u8), _mm_load_si128((__m128i*){}.u8)));", v(insn.operands[0]), v(insn.operands[1]), v(insn.operands[2]));
break;
case PPC_INST_VAVGUB:
println("\t_mm_store_si128((__m128i*){}.u8, _mm_avg_epu8(_mm_load_si128((__m128i*){}.u8), _mm_load_si128((__m128i*){}.u8)));", v(insn.operands[0]), v(insn.operands[1]), v(insn.operands[2]));
break;
case PPC_INST_VCTSXS:
case PPC_INST_VCFPSXWS128:
printSetFlushMode(true);
print("\t_mm_store_si128((__m128i*){}.s32, _mm_vctsxs(", v(insn.operands[0]));
if (insn.operands[2] != 0)
println("_mm_mul_ps(_mm_load_ps({}.f32), _mm_set1_ps({}))));", v(insn.operands[1]), 1u << insn.operands[2]);
else
println("_mm_load_ps({}.f32)));", v(insn.operands[1]));
break;
case PPC_INST_VCFSX:
case PPC_INST_VCSXWFP128:
{
printSetFlushMode(true);
print("\t_mm_store_ps({}.f32, ", v(insn.operands[0]));
if (insn.operands[2] != 0)
{
const float value = ldexp(1.0f, -int32_t(insn.operands[2]));
println("_mm_mul_ps(_mm_cvtepi32_ps(_mm_load_si128((__m128i*){}.u32)), _mm_castsi128_ps(_mm_set1_epi32(int(0x{:X})))));", v(insn.operands[1]), *reinterpret_cast<const uint32_t*>(&value));
}
else
{
println("_mm_cvtepi32_ps(_mm_load_si128((__m128i*){}.u32)));", v(insn.operands[1]));
}
break;
}
case PPC_INST_VCFUX:
case PPC_INST_VCUXWFP128:
{
printSetFlushMode(true);
print("\t_mm_store_ps({}.f32, ", v(insn.operands[0]));
if (insn.operands[2] != 0)
{
const float value = ldexp(1.0f, -int32_t(insn.operands[2]));
println("_mm_mul_ps(_mm_cvtepu32_ps_(_mm_load_si128((__m128i*){}.u32)), _mm_castsi128_ps(_mm_set1_epi32(int(0x{:X})))));", v(insn.operands[1]), *reinterpret_cast<const uint32_t*>(&value));
}
else
{
println("_mm_cvtepu32_ps_(_mm_load_si128((__m128i*){}.u32)));", v(insn.operands[1]));
}
break;
}
case PPC_INST_VCMPBFP:
case PPC_INST_VCMPBFP128:
println("\t__debugbreak();");
break;
case PPC_INST_VCMPEQFP:
case PPC_INST_VCMPEQFP128:
printSetFlushMode(true);
println("\t_mm_store_ps({}.f32, _mm_cmpeq_ps(_mm_load_ps({}.f32), _mm_load_ps({}.f32)));", v(insn.operands[0]), v(insn.operands[1]), v(insn.operands[2]));
if (strchr(insn.opcode->name, '.'))
println("\t{}.setFromMask(_mm_load_ps({}.f32), 0xF);", cr(6), v(insn.operands[0]));
break;
case PPC_INST_VCMPEQUB:
println("\t_mm_store_si128((__m128i*){}.u8, _mm_cmpeq_epi8(_mm_load_si128((__m128i*){}.u8), _mm_load_si128((__m128i*){}.u8)));", v(insn.operands[0]), v(insn.operands[1]), v(insn.operands[2]));
if (strchr(insn.opcode->name, '.'))
println("\t{}.setFromMask(_mm_load_si128((__m128i*){}.u8), 0xFFFF);", cr(6), v(insn.operands[0]));
break;
case PPC_INST_VCMPEQUW:
case PPC_INST_VCMPEQUW128:
println("\t_mm_store_si128((__m128i*){}.u8, _mm_cmpeq_epi32(_mm_load_si128((__m128i*){}.u32), _mm_load_si128((__m128i*){}.u32)));", v(insn.operands[0]), v(insn.operands[1]), v(insn.operands[2]));
if (strchr(insn.opcode->name, '.'))
println("\t{}.setFromMask(_mm_load_ps({}.f32), 0xF);", cr(6), v(insn.operands[0]));
break;
case PPC_INST_VCMPGEFP:
case PPC_INST_VCMPGEFP128:
printSetFlushMode(true);
println("\t_mm_store_ps({}.f32, _mm_cmpge_ps(_mm_load_ps({}.f32), _mm_load_ps({}.f32)));", v(insn.operands[0]), v(insn.operands[1]), v(insn.operands[2]));
if (strchr(insn.opcode->name, '.'))
println("\t{}.setFromMask(_mm_load_ps({}.f32), 0xF);", cr(6), v(insn.operands[0]));
break;
case PPC_INST_VCMPGTFP:
case PPC_INST_VCMPGTFP128:
printSetFlushMode(true);
println("\t_mm_store_ps({}.f32, _mm_cmpgt_ps(_mm_load_ps({}.f32), _mm_load_ps({}.f32)));", v(insn.operands[0]), v(insn.operands[1]), v(insn.operands[2]));
if (strchr(insn.opcode->name, '.'))
println("\t{}.setFromMask(_mm_load_ps({}.f32), 0xF);", cr(6), v(insn.operands[0]));
break;
case PPC_INST_VCMPGTUB:
println("\t_mm_store_si128((__m128i*){}.u8, _mm_cmpgt_epu8(_mm_load_si128((__m128i*){}.u8), _mm_load_si128((__m128i*){}.u8)));", v(insn.operands[0]), v(insn.operands[1]), v(insn.operands[2]));
break;
case PPC_INST_VCMPGTUH:
println("\t_mm_store_si128((__m128i*){}.u8, _mm_cmpgt_epu16(_mm_load_si128((__m128i*){}.u16), _mm_load_si128((__m128i*){}.u16)));", v(insn.operands[0]), v(insn.operands[1]), v(insn.operands[2]));
break;
case PPC_INST_VEXPTEFP:
case PPC_INST_VEXPTEFP128:
// TODO: vectorize
printSetFlushMode(true);
for (size_t i = 0; i < 4; i++)
println("\t{}.f32[{}] = exp2f({}.f32[{}]);", v(insn.operands[0]), i, v(insn.operands[1]), i);
break;
case PPC_INST_VLOGEFP:
case PPC_INST_VLOGEFP128:
// TODO: vectorize
printSetFlushMode(true);
for (size_t i = 0; i < 4; i++)
println("\t{}.f32[{}] = log2f({}.f32[{}]);", v(insn.operands[0]), i, v(insn.operands[1]), i);
break;
case PPC_INST_VMADDCFP128:
case PPC_INST_VMADDFP:
case PPC_INST_VMADDFP128:
printSetFlushMode(true);
println("\t_mm_store_ps({}.f32, _mm_add_ps(_mm_mul_ps(_mm_load_ps({}.f32), _mm_load_ps({}.f32)), _mm_load_ps({}.f32)));", v(insn.operands[0]), v(insn.operands[1]), v(insn.operands[2]), v(insn.operands[3]));
break;
case PPC_INST_VMAXFP:
case PPC_INST_VMAXFP128:
printSetFlushMode(true);
println("\t_mm_store_ps({}.f32, _mm_max_ps(_mm_load_ps({}.f32), _mm_load_ps({}.f32)));", v(insn.operands[0]), v(insn.operands[1]), v(insn.operands[2]));
break;
case PPC_INST_VMAXSW:
println("\t_mm_store_si128((__m128i*){}.u32, _mm_max_epi32(_mm_load_si128((__m128i*){}.u32), _mm_load_si128((__m128i*){}.u32)));", v(insn.operands[0]), v(insn.operands[1]), v(insn.operands[2]));
break;
case PPC_INST_VMINFP:
case PPC_INST_VMINFP128:
printSetFlushMode(true);
println("\t_mm_store_ps({}.f32, _mm_min_ps(_mm_load_ps({}.f32), _mm_load_ps({}.f32)));", v(insn.operands[0]), v(insn.operands[1]), v(insn.operands[2]));
break;
case PPC_INST_VMRGHB:
println("\t_mm_store_si128((__m128i*){}.u8, _mm_unpackhi_epi8(_mm_load_si128((__m128i*){}.u8), _mm_load_si128((__m128i*){}.u8)));", v(insn.operands[0]), v(insn.operands[2]), v(insn.operands[1]));
break;
case PPC_INST_VMRGHH:
println("\t_mm_store_si128((__m128i*){}.u16, _mm_unpackhi_epi16(_mm_load_si128((__m128i*){}.u16), _mm_load_si128((__m128i*){}.u16)));", v(insn.operands[0]), v(insn.operands[2]), v(insn.operands[1]));
break;
case PPC_INST_VMRGHW:
case PPC_INST_VMRGHW128:
println("\t_mm_store_si128((__m128i*){}.u32, _mm_unpackhi_epi32(_mm_load_si128((__m128i*){}.u32), _mm_load_si128((__m128i*){}.u32)));", v(insn.operands[0]), v(insn.operands[2]), v(insn.operands[1]));
break;
case PPC_INST_VMRGLB:
println("\t_mm_store_si128((__m128i*){}.u8, _mm_unpacklo_epi8(_mm_load_si128((__m128i*){}.u8), _mm_load_si128((__m128i*){}.u8)));", v(insn.operands[0]), v(insn.operands[2]), v(insn.operands[1]));
break;
case PPC_INST_VMRGLH:
println("\t_mm_store_si128((__m128i*){}.u16, _mm_unpacklo_epi16(_mm_load_si128((__m128i*){}.u16), _mm_load_si128((__m128i*){}.u16)));", v(insn.operands[0]), v(insn.operands[2]), v(insn.operands[1]));
break;
case PPC_INST_VMRGLW:
case PPC_INST_VMRGLW128:
println("\t_mm_store_si128((__m128i*){}.u32, _mm_unpacklo_epi32(_mm_load_si128((__m128i*){}.u32), _mm_load_si128((__m128i*){}.u32)));", v(insn.operands[0]), v(insn.operands[2]), v(insn.operands[1]));
break;
case PPC_INST_VMSUM3FP128:
// NOTE: accounting for full vector reversal here. should dot product yzw instead of xyz
printSetFlushMode(true);
println("\t_mm_store_ps({}.f32, _mm_dp_ps(_mm_load_ps({}.f32), _mm_load_ps({}.f32), 0xEF));", v(insn.operands[0]), v(insn.operands[1]), v(insn.operands[2]));
break;
case PPC_INST_VMSUM4FP128:
printSetFlushMode(true);
println("\t_mm_store_ps({}.f32, _mm_dp_ps(_mm_load_ps({}.f32), _mm_load_ps({}.f32), 0xFF));", v(insn.operands[0]), v(insn.operands[1]), v(insn.operands[2]));
break;
case PPC_INST_VMULFP128:
printSetFlushMode(true);
println("\t_mm_store_ps({}.f32, _mm_mul_ps(_mm_load_ps({}.f32), _mm_load_ps({}.f32)));", v(insn.operands[0]), v(insn.operands[1]), v(insn.operands[2]));
break;
case PPC_INST_VNMSUBFP:
case PPC_INST_VNMSUBFP128:
printSetFlushMode(true);
println("\t_mm_store_ps({}.f32, _mm_xor_ps(_mm_sub_ps(_mm_mul_ps(_mm_load_ps({}.f32), _mm_load_ps({}.f32)), _mm_load_ps({}.f32)), _mm_castsi128_ps(_mm_set1_epi32(int(0x80000000)))));", v(insn.operands[0]), v(insn.operands[1]), v(insn.operands[2]), v(insn.operands[3]));
break;
case PPC_INST_VOR:
case PPC_INST_VOR128:
print("\t_mm_store_si128((__m128i*){}.u8, ", v(insn.operands[0]));
if (insn.operands[1] != insn.operands[2])
println("_mm_or_si128(_mm_load_si128((__m128i*){}.u8), _mm_load_si128((__m128i*){}.u8)));", v(insn.operands[1]), v(insn.operands[2]));
else
println("_mm_load_si128((__m128i*){}.u8));", v(insn.operands[1]));
break;
case PPC_INST_VPERM:
case PPC_INST_VPERM128:
println("\t_mm_store_si128((__m128i*){}.u8, _mm_perm_epi8_(_mm_load_si128((__m128i*){}.u8), _mm_load_si128((__m128i*){}.u8), _mm_load_si128((__m128i*){}.u8)));", v(insn.operands[0]), v(insn.operands[1]), v(insn.operands[2]), v(insn.operands[3]));
break;
case PPC_INST_VPERMWI128:
{
// NOTE: accounting for full vector reversal here
uint32_t x = 3 - (insn.operands[2] & 0x3);
uint32_t y = 3 - ((insn.operands[2] >> 2) & 0x3);
uint32_t z = 3 - ((insn.operands[2] >> 4) & 0x3);
uint32_t w = 3 - ((insn.operands[2] >> 6) & 0x3);
uint32_t perm = x | (y << 2) | (z << 4) | (w << 6);
println("\t_mm_store_si128((__m128i*){}.u32, _mm_shuffle_epi32(_mm_load_si128((__m128i*){}.u32), 0x{:X}));", v(insn.operands[0]), v(insn.operands[1]), perm);
break;
}
case PPC_INST_VPKD3D128:
// TODO: vectorize somehow?
// NOTE: handling vector reversal here too
printSetFlushMode(true);
switch (insn.operands[2])
{
case 0: // D3D color
if (insn.operands[3] != 1 || insn.operands[4] != 3)
fmt::println("Unexpected D3D color pack instruction at {:X}", base);
for (size_t i = 0; i < 4; i++)
{
constexpr size_t indices[] = { 3, 0, 1, 2 };
println("\t{}.u32[{}] = 0x404000FF;", vTemp(), i);
println("\t{}.f32[{}] = {}.f32[{}] < 3.0f ? 3.0f : ({}.f32[{}] > {}.f32[{}] ? {}.f32[{}] : {}.f32[{}]);", vTemp(), i, v(insn.operands[1]), i, v(insn.operands[1]), i, vTemp(), i, vTemp(), i, v(insn.operands[1]), i);
println("\t{}.u32 {}= uint32_t({}.u8[{}]) << {};", temp(), i == 0 ? "" : "|", vTemp(), i * 4, indices[i] * 8);
}
println("\t{}.u32[3] = {}.u32;", v(insn.operands[0]), temp());
break;
default:
println("\t__debugbreak();");
break;
}
break;
case PPC_INST_VPKSHUS:
case PPC_INST_VPKSHUS128:
println("\t_mm_store_si128((__m128i*){}.u8, _mm_packus_epi16(_mm_load_si128((__m128i*){}.s16), _mm_load_si128((__m128i*){}.s16)));", v(insn.operands[0]), v(insn.operands[2]), v(insn.operands[1]));
break;
case PPC_INST_VREFP:
case PPC_INST_VREFP128:
// TODO: see if we can use rcp safely
printSetFlushMode(true);
println("\t_mm_store_ps({}.f32, _mm_div_ps(_mm_set1_ps(1), _mm_load_ps({}.f32)));", v(insn.operands[0]), v(insn.operands[1]));
break;
case PPC_INST_VRFIM:
case PPC_INST_VRFIM128:
printSetFlushMode(true);
println("\t_mm_store_ps({}.f32, _mm_round_ps(_mm_load_ps({}.f32), _MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC));", v(insn.operands[0]), v(insn.operands[1]));
break;
case PPC_INST_VRFIN:
case PPC_INST_VRFIN128:
printSetFlushMode(true);
println("\t_mm_store_ps({}.f32, _mm_round_ps(_mm_load_ps({}.f32), _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));", v(insn.operands[0]), v(insn.operands[1]));
break;
case PPC_INST_VRFIZ:
case PPC_INST_VRFIZ128:
printSetFlushMode(true);
println("\t_mm_store_ps({}.f32, _mm_round_ps(_mm_load_ps({}.f32), _MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC));", v(insn.operands[0]), v(insn.operands[1]));
break;
case PPC_INST_VRLIMI128:
{
constexpr size_t shuffles[] = { _MM_SHUFFLE(3, 2, 1, 0), _MM_SHUFFLE(2, 1, 0, 3), _MM_SHUFFLE(1, 0, 3, 2), _MM_SHUFFLE(0, 3, 2, 1) };
println("\t_mm_store_ps({}.f32, _mm_blend_ps(_mm_load_ps({}.f32), _mm_permute_ps(_mm_load_ps({}.f32), {}), {}));", v(insn.operands[0]), v(insn.operands[0]), v(insn.operands[1]), shuffles[insn.operands[3]], insn.operands[2]);
break;
}
case PPC_INST_VRSQRTEFP:
case PPC_INST_VRSQRTEFP128:
// TODO: see if we can use rsqrt safely
// TODO: we can detect if the input is from a dot product and apply logic only on one value
printSetFlushMode(true);
println("\t_mm_store_ps({}.f32, _mm_div_ps(_mm_set1_ps(1), _mm_sqrt_ps(_mm_load_ps({}.f32))));", v(insn.operands[0]), v(insn.operands[1]));
break;
case PPC_INST_VSEL:
println("\t_mm_store_si128((__m128i*){}.u8, _mm_or_si128(_mm_andnot_si128(_mm_load_si128((__m128i*){}.u8), _mm_load_si128((__m128i*){}.u8)), _mm_and_si128(_mm_load_si128((__m128i*){}.u8), _mm_load_si128((__m128i*){}.u8))));", v(insn.operands[0]), v(insn.operands[3]), v(insn.operands[1]), v(insn.operands[3]), v(insn.operands[2]));
break;
case PPC_INST_VSLB:
// TODO: vectorize
for (size_t i = 0; i < 16; i++)
println("\t{}.u8[{}] = {}.u8[{}] << ({}.u8[{}] & 0x7);", v(insn.operands[0]), i, v(insn.operands[1]), i, v(insn.operands[2]), i);
break;
case PPC_INST_VSLDOI:
case PPC_INST_VSLDOI128:
println("\t_mm_store_si128((__m128i*){}.u8, _mm_alignr_epi8(_mm_load_si128((__m128i*){}.u8), _mm_load_si128((__m128i*){}.u8), {}));", v(insn.operands[0]), v(insn.operands[1]), v(insn.operands[2]), 16 - insn.operands[3]);
break;
case PPC_INST_VSLW:
case PPC_INST_VSLW128:
// TODO: vectorize, ensure endianness is correct
for (size_t i = 0; i < 4; i++)
println("\t{}.u32[{}] = {}.u32[{}] << ({}.u8[{}] & 0x1F);", v(insn.operands[0]), i, v(insn.operands[1]), i, v(insn.operands[2]), i * 4);
break;
case PPC_INST_VSPLTB:
{
// NOTE: accounting for full vector reversal here
uint32_t perm = 15 - insn.operands[2];
println("\t_mm_store_si128((__m128i*){}.u8, _mm_shuffle_epi8(_mm_load_si128((__m128i*){}.u8), _mm_set1_epi8(char(0x{:X}))));", v(insn.operands[0]), v(insn.operands[1]), perm);
break;
}
case PPC_INST_VSPLTH:
{
// NOTE: accounting for full vector reversal here
uint32_t perm = 7 - insn.operands[2];
perm = (perm * 2) | ((perm * 2 + 1) << 8);
println("\t_mm_store_si128((__m128i*){}.u16, _mm_shuffle_epi8(_mm_load_si128((__m128i*){}.u16), _mm_set1_epi16(short(0x{:X}))));", v(insn.operands[0]), v(insn.operands[1]), perm);
break;
}
case PPC_INST_VSPLTISB:
println("\t_mm_store_si128((__m128i*){}.u8, _mm_set1_epi8(char(0x{:X})));", v(insn.operands[0]), insn.operands[1]);
break;
case PPC_INST_VSPLTISW:
case PPC_INST_VSPLTISW128:
println("\t_mm_store_si128((__m128i*){}.u32, _mm_set1_epi32(int(0x{:X})));", v(insn.operands[0]), insn.operands[1]);
break;
case PPC_INST_VSPLTW:
case PPC_INST_VSPLTW128:
{
// NOTE: accounting for full vector reversal here
uint32_t perm = 3 - insn.operands[2];
perm |= (perm << 2) | (perm << 4) | (perm << 6);
println("\t_mm_store_si128((__m128i*){}.u32, _mm_shuffle_epi32(_mm_load_si128((__m128i*){}.u32), 0x{:X}));", v(insn.operands[0]), v(insn.operands[1]), perm);
break;
}
case PPC_INST_VSR:
println("\t_mm_store_si128((__m128i*){}.u8, _mm_vsr(_mm_load_si128((__m128i*){}.u8), _mm_load_si128((__m128i*){}.u8)));", v(insn.operands[0]), v(insn.operands[1]), v(insn.operands[2]));
break;
case PPC_INST_VSRAW:
case PPC_INST_VSRAW128:
// TODO: vectorize, ensure endianness is correct
for (size_t i = 0; i < 4; i++)
println("\t{}.s32[{}] = {}.s32[{}] >> ({}.u8[{}] & 0x1F);", v(insn.operands[0]), i, v(insn.operands[1]), i, v(insn.operands[2]), i * 4);
break;
case PPC_INST_VSRW:
case PPC_INST_VSRW128:
// TODO: vectorize, ensure endianness is correct
for (size_t i = 0; i < 4; i++)
println("\t{}.u32[{}] = {}.u32[{}] >> ({}.u8[{}] & 0x1F);", v(insn.operands[0]), i, v(insn.operands[1]), i, v(insn.operands[2]), i * 4);
break;
case PPC_INST_VSUBFP:
case PPC_INST_VSUBFP128:
printSetFlushMode(true);
println("\t_mm_store_ps({}.f32, _mm_sub_ps(_mm_load_ps({}.f32), _mm_load_ps({}.f32)));", v(insn.operands[0]), v(insn.operands[1]), v(insn.operands[2]));
break;
case PPC_INST_VSUBSWS:
// TODO: vectorize
for (size_t i = 0; i < 4; i++)
{
println("\t{}.s64 = int64_t({}.s32[{}]) - int64_t({}.s32[{}]);", temp(), v(insn.operands[1]), i, v(insn.operands[2]), i);
println("\t{}.s32[{}] = {}.s64 > INT_MAX ? INT_MAX : {}.s64 < INT_MIN ? INT_MIN : {}.s64;", v(insn.operands[0]), i, temp(), temp(), temp());
}
break;
case PPC_INST_VSUBUBS:
println("\t_mm_store_si128((__m128i*){}.u8, _mm_subs_epu8(_mm_load_si128((__m128i*){}.u8), _mm_load_si128((__m128i*){}.u8)));", v(insn.operands[0]), v(insn.operands[1]), v(insn.operands[2]));
break;
case PPC_INST_VSUBUHM:
println("\t_mm_store_si128((__m128i*){}.u8, _mm_sub_epi16(_mm_load_si128((__m128i*){}.u8), _mm_load_si128((__m128i*){}.u8)));", v(insn.operands[0]), v(insn.operands[1]), v(insn.operands[2]));
break;
case PPC_INST_VUPKD3D128:
// TODO: vectorize somehow?
// NOTE: handling vector reversal here too
switch (insn.operands[2] >> 2)
{
case 0: // D3D color
for (size_t i = 0; i < 4; i++)
{
constexpr size_t indices[] = { 3, 0, 1, 2 };
println("\t{}.u32[{}] = {}.u8[{}] | 0x3F800000;", vTemp(), i, v(insn.operands[1]), indices[i]);
}
println("\t{} = {};", v(insn.operands[0]), vTemp());
break;
case 1: // 2 shorts
for (size_t i = 0; i < 2; i++)
{
println("\t{}.f32 = 3.0f;", temp());
println("\t{}.s32 += {}.s16[{}];", temp(), v(insn.operands[1]), 1 - i);
println("\t{}.f32[{}] = {}.f32;", vTemp(), 3 - i, temp());
}
println("\t{}.f32[1] = 0.0f;", vTemp());
println("\t{}.f32[0] = 1.0f;", vTemp());
println("\t{} = {};", v(insn.operands[0]), vTemp());
break;
default:
println("\t__debugbreak();");
break;
}
break;
case PPC_INST_VUPKHSB:
case PPC_INST_VUPKHSB128:
println("\t_mm_store_si128((__m128i*){}.s16, _mm_cvtepi8_epi16(_mm_unpackhi_epi64(_mm_load_si128((__m128i*){}.s8), _mm_load_si128((__m128i*){}.s8))));", v(insn.operands[0]), v(insn.operands[1]), v(insn.operands[1]));
break;
case PPC_INST_VUPKHSH:
case PPC_INST_VUPKHSH128:
println("\t_mm_store_si128((__m128i*){}.s32, _mm_cvtepi16_epi32(_mm_unpackhi_epi64(_mm_load_si128((__m128i*){}.s16), _mm_load_si128((__m128i*){}.s16))));", v(insn.operands[0]), v(insn.operands[1]), v(insn.operands[1]));
break;
case PPC_INST_VUPKLSB:
case PPC_INST_VUPKLSB128:
println("\t_mm_store_si128((__m128i*){}.s32, _mm_cvtepi8_epi16(_mm_load_si128((__m128i*){}.s16)));", v(insn.operands[0]), v(insn.operands[1]));
break;
case PPC_INST_VUPKLSH:
case PPC_INST_VUPKLSH128:
println("\t_mm_store_si128((__m128i*){}.s32, _mm_cvtepi16_epi32(_mm_load_si128((__m128i*){}.s16)));", v(insn.operands[0]), v(insn.operands[1]));
break;
case PPC_INST_VXOR:
case PPC_INST_VXOR128:
print("\t_mm_store_si128((__m128i*){}.u8, ", v(insn.operands[0]));
if (insn.operands[1] != insn.operands[2])
println("_mm_xor_si128(_mm_load_si128((__m128i*){}.u8), _mm_load_si128((__m128i*){}.u8)));", v(insn.operands[1]), v(insn.operands[2]));
else
println("_mm_setzero_si128());");
break;
case PPC_INST_XOR:
println("\t{}.u64 = {}.u64 ^ {}.u64;", r(insn.operands[0]), r(insn.operands[1]), r(insn.operands[2]));
if (strchr(insn.opcode->name, '.'))
println("\t{}.compare<int32_t>({}.s32, 0, {});", cr(0), r(insn.operands[0]), xer());
break;
case PPC_INST_XORI:
println("\t{}.u64 = {}.u64 ^ {};", r(insn.operands[0]), r(insn.operands[1]), insn.operands[2]);
break;
case PPC_INST_XORIS:
println("\t{}.u64 = {}.u64 ^ {};", r(insn.operands[0]), r(insn.operands[1]), insn.operands[2] << 16);
break;
default:
return false;
}
#if 1
if (strchr(insn.opcode->name, '.'))
{
int lastLine = out.find_last_of('\n', out.size() - 2);
if (out.find("cr0", lastLine + 1) == std::string::npos && out.find("cr6", lastLine + 1) == std::string::npos)
fmt::println("{} at {:X} has RC bit enabled but no comparison was generated", insn.opcode->name, base);
}
#endif
return true;
}
bool Recompiler::Recompile(const Function& fn)
{
auto base = fn.base;
auto end = base + fn.size;
auto* data = (uint32_t*)image.Find(base);
static std::unordered_set<size_t> labels;
labels.clear();
for (size_t addr = base; addr < end; addr += 4)
{
const uint32_t instruction = ByteSwap(*(uint32_t*)((char*)data + addr - base));
if (!PPC_BL(instruction))
{
const size_t op = PPC_OP(instruction);
if (op == PPC_OP_B)
labels.emplace(addr + PPC_BI(instruction));
else if (op == PPC_OP_BC)
labels.emplace(addr + PPC_BD(instruction));
}
auto switchTable = config.switchTables.find(addr);
if (switchTable != config.switchTables.end())
{
for (auto label : switchTable->second.labels)
labels.emplace(label);
}
auto midAsmHook = config.midAsmHooks.find(addr);
if (midAsmHook != config.midAsmHooks.end())
{
if (midAsmHook->second.returnOnFalse || midAsmHook->second.returnOnTrue ||
midAsmHook->second.jumpAddressOnFalse != NULL || midAsmHook->second.jumpAddressOnTrue != NULL)
{
print("extern bool ");
}
else
{
print("extern void ");
}
print("{}(", midAsmHook->second.name);
for (auto& reg : midAsmHook->second.registers)
{
if (out.back() != '(')
out += ", ";
switch (reg[0])
{
case 'c':
if (reg == "ctr")
print("PPCRegister& ctr");
else
print("PPCCRRegister& {}", reg);
break;
case 'x':
print("PPCXERRegister& xer");
break;
case 'r':
print("PPCRegister& {}", reg);
break;
case 'f':
if (reg == "fpscr")
print("PPCFPSCRRegister& fpscr");
else
print("PPCRegister& {}", reg);
break;
case 'v':
print("PPCVRegister& {}", reg);
break;
}
}
println(");\n");
if (midAsmHook->second.jumpAddress != NULL)
labels.emplace(midAsmHook->second.jumpAddress);
if (midAsmHook->second.jumpAddressOnTrue != NULL)
labels.emplace(midAsmHook->second.jumpAddressOnTrue);
if (midAsmHook->second.jumpAddressOnFalse != NULL)
labels.emplace(midAsmHook->second.jumpAddressOnFalse);
}
}
auto symbol = image.symbols.find(fn.base);
std::string name;
if (symbol != image.symbols.end())
{
name = symbol->name;
}
else
{
name = fmt::format("sub_{}", fn.base);
}
println("__attribute__((alias(\"__imp__{}\"))) PPC_WEAK_FUNC({});", name, name);
println("PPC_FUNC_IMPL(__imp__{}) {{", name);
println("\tPPC_FUNC_PROLOGUE();");
auto switchTable = config.switchTables.end();
bool allRecompiled = true;
CSRState csrState = CSRState::Unknown;
// TODO: the printing scheme here is scuffed
RecompilerLocalVariables localVariables;
static std::string tempString;
tempString.clear();
std::swap(out, tempString);
ppc_insn insn;
while (base < end)
{
if (labels.find(base) != labels.end())
{
println("loc_{:X}:", base);
// Anyone could jump to this label so we wouldn't know what the CSR state would be.
csrState = CSRState::Unknown;
}
if (switchTable == config.switchTables.end())
switchTable = config.switchTables.find(base);
ppc::Disassemble(data, 4, base, insn);
if (insn.opcode == nullptr)
{
println("\t// {}", insn.op_str);
#if 1
if (*data != 0)
fmt::println("Unable to decode instruction {:X} at {:X}", *data, base);
#endif
}
else
{
if (insn.opcode->id == PPC_INST_BCTR && (*(data - 1) == 0x07008038 || *(data - 1) == 0x00000060) && switchTable == config.switchTables.end())
fmt::println("Found a switch jump table at {:X} with no switch table entry present", base);
if (!Recompile(fn, base, insn, data, switchTable, localVariables, csrState))
{
fmt::println("Unrecognized instruction at 0x{:X}: {}", base, insn.opcode->name);
allRecompiled = false;
}
}
base += 4;
++data;
}
#if 0
if (insn.opcode == nullptr || (insn.opcode->id != PPC_INST_B && insn.opcode->id != PPC_INST_BCTR && insn.opcode->id != PPC_INST_BLR))
fmt::println("Function at {:X} ends prematurely with instruction {} at {:X}", fn.base, insn.opcode != nullptr ? insn.opcode->name : "INVALID", base - 4);
#endif
println("}}\n");
std::swap(out, tempString);
if (localVariables.ctr)
println("\tPPCRegister ctr{{}};");
if (localVariables.xer)
println("\tPPCXERRegister xer{{}};");
if (localVariables.reserved)
println("\tPPCRegister reserved{{}};");
for (size_t i = 0; i < 8; i++)
{
if (localVariables.cr[i])
println("\tPPCCRRegister cr{}{{}};", i);
}
for (size_t i = 0; i < 32; i++)
{
if (localVariables.r[i])
println("\tPPCRegister r{}{{}};", i);
}
for (size_t i = 0; i < 32; i++)
{
if (localVariables.f[i])
println("\tPPCRegister f{}{{}};", i);
}
for (size_t i = 0; i < 128; i++)
{
if (localVariables.v[i])
println("\tPPCVRegister v{}{{}};", i);
}
if (localVariables.env)
println("\tPPCContext env{{}};");
if (localVariables.temp)
println("\tPPCRegister temp{{}};");
if (localVariables.vTemp)
println("\tPPCVRegister vTemp{{}};");
if (localVariables.ea)
println("\tuint32_t ea{{}};");
out += tempString;
return allRecompiled;
}
void Recompiler::Recompile()
{
out.reserve(10 * 1024 * 1024);
{
println("#pragma once");
println("#ifndef PPC_CONFIG_H_INCLUDED");
println("#define PPC_CONFIG_H_INCLUDED\n");
if (config.skipLr)
println("#define PPC_CONFIG_SKIP_LR");
if (config.ctrAsLocalVariable)
println("#define PPC_CONFIG_CTR_AS_LOCAL");
if (config.xerAsLocalVariable)
println("#define PPC_CONFIG_XER_AS_LOCAL");
if (config.reservedRegisterAsLocalVariable)
println("#define PPC_CONFIG_RESERVED_AS_LOCAL");
if (config.skipMsr)
println("#define PPC_CONFIG_SKIP_MSR");
if (config.crRegistersAsLocalVariables)
println("#define PPC_CONFIG_CR_AS_LOCAL");
if (config.nonArgumentRegistersAsLocalVariables)
println("#define PPC_CONFIG_NON_ARGUMENT_AS_LOCAL");
if (config.nonVolatileRegistersAsLocalVariables)
println("#define PPC_CONFIG_NON_VOLATILE_AS_LOCAL");
println("");
println("#ifdef PPC_INCLUDE_DETAIL");
println("#include \"ppc_detail.h\"");
println("#endif");
println("\n#endif");
SaveCurrentOutData("ppc_config.h");
}
{
println("#pragma once");
println("#include \"ppc_config.h\"\n");
println("{}", std::string_view{g_PPCContextText, g_PPCContextText_size});
SaveCurrentOutData("ppc_context.h");
}
{
println("#pragma once\n");
println("#include \"ppc_config.h\"");
println("#include \"ppc_context.h\"\n");
for (auto& symbol : image.symbols)
println("PPC_EXTERN_FUNC({});", symbol.name);
SaveCurrentOutData("ppc_recomp_shared.h");
}
{
println("#include \"ppc_recomp_shared.h\"\n");
println("PPCFuncMapping PPCFuncMappings[] = {{");
for (auto& symbol : image.symbols)
println("\t{{ 0x{:X}, {} }},", symbol.address, symbol.name);
println("\t{{ 0, nullptr }}");
println("}};");
SaveCurrentOutData("ppc_func_mapping.cpp");
}
for (size_t i = 0; i < functions.size(); i++)
{
if ((i % 256) == 0)
{
SaveCurrentOutData();
println("#include \"ppc_recomp_shared.h\"\n");
}
if ((i % 2048) == 0 || (i == (functions.size() - 1)))
fmt::println("Recompiling functions... {}%", static_cast<float>(i + 1) / functions.size() * 100.0f);
Recompile(functions[i]);
}
SaveCurrentOutData();
}
void Recompiler::SaveCurrentOutData(const std::string_view& name)
{
if (!out.empty())
{
std::string cppName;
if (name.empty())
{
cppName = fmt::format("ppc_recomp.{}.cpp", cppFileIndex);
++cppFileIndex;
}
bool shouldWrite = true;
// Check if an identical file already exists first to not trigger recompilation
std::string filePath = fmt::format("{}/{}/{}", config.directoryPath, config.outDirectoryPath, name.empty() ? cppName : name);
FILE* f = fopen(filePath.c_str(), "rb");
if (f)
{
static std::vector<uint8_t> temp;
fseek(f, 0, SEEK_END);
long fileSize = ftell(f);
if (fileSize == out.size())
{
fseek(f, 0, SEEK_SET);
temp.resize(fileSize);
fread(temp.data(), 1, fileSize, f);
shouldWrite = !XXH128_isEqual(XXH3_128bits(temp.data(), temp.size()), XXH3_128bits(out.data(), out.size()));
}
fclose(f);
}
if (shouldWrite)
{
f = fopen(filePath.c_str(), "wb");
fwrite(out.data(), 1, out.size(), f);
fclose(f);
}
out.clear();
}
}