XenonRecomp/XenonUtils/xex_patcher.cpp
Skyth (Asilkan) cd6fcb33bd
Port XEX patcher from Unleashed Recompiled. (#4)
* Port XEX patcher from Unleashed Recompiled.

* Fix compilation error on Linux.
2025-02-19 20:22:30 +03:00

513 lines
18 KiB
C++

// Referenced from: https://github.com/xenia-canary/xenia-canary/blob/canary_experimental/src/xenia/cpu/xex_module.cc
/**
******************************************************************************
* Xenia : Xbox 360 Emulator Research Project *
******************************************************************************
* Copyright 2023 Ben Vanik. All rights reserved. *
* Released under the BSD license - see LICENSE in the root for more details. *
******************************************************************************
*/
#include "xex_patcher.h"
#include "xex.h"
#include <bit>
#include <cassert>
#include <climits>
#include <fstream>
#include <aes.hpp>
#include <lzx.h>
#include <mspack.h>
#include <TinySHA1.hpp>
#include "memory_mapped_file.h"
struct mspack_memory_file
{
mspack_system sys;
void *buffer;
size_t bufferSize;
size_t offset;
};
static mspack_memory_file *mspack_memory_open(mspack_system *sys, void *buffer, size_t bufferSize)
{
assert(bufferSize < INT_MAX);
if (bufferSize >= INT_MAX)
{
return nullptr;
}
mspack_memory_file *memoryFile = (mspack_memory_file *)(std::calloc(1, sizeof(mspack_memory_file)));
if (memoryFile == nullptr)
{
return memoryFile;
}
memoryFile->buffer = buffer;
memoryFile->bufferSize = bufferSize;
memoryFile->offset = 0;
return memoryFile;
}
static void mspack_memory_close(mspack_memory_file *file)
{
std::free(file);
}
static int mspack_memory_read(mspack_file *file, void *buffer, int chars)
{
mspack_memory_file *memoryFile = (mspack_memory_file *)(file);
const size_t remaining = memoryFile->bufferSize - memoryFile->offset;
const size_t total = std::min(size_t(chars), remaining);
std::memcpy(buffer, (uint8_t *)(memoryFile->buffer) + memoryFile->offset, total);
memoryFile->offset += total;
return int(total);
}
static int mspack_memory_write(mspack_file *file, void *buffer, int chars)
{
mspack_memory_file *memoryFile = (mspack_memory_file *)(file);
const size_t remaining = memoryFile->bufferSize - memoryFile->offset;
const size_t total = std::min(size_t(chars), remaining);
std::memcpy((uint8_t *)(memoryFile->buffer) + memoryFile->offset, buffer, total);
memoryFile->offset += total;
return int(total);
}
static void *mspack_memory_alloc(mspack_system *sys, size_t chars)
{
return std::calloc(chars, 1);
}
static void mspack_memory_free(void *ptr)
{
std::free(ptr);
}
static void mspack_memory_copy(void *src, void *dest, size_t chars)
{
std::memcpy(dest, src, chars);
}
static mspack_system *mspack_memory_sys_create()
{
auto sys = (mspack_system *)(std::calloc(1, sizeof(mspack_system)));
if (!sys)
{
return nullptr;
}
sys->read = mspack_memory_read;
sys->write = mspack_memory_write;
sys->alloc = mspack_memory_alloc;
sys->free = mspack_memory_free;
sys->copy = mspack_memory_copy;
return sys;
}
static void mspack_memory_sys_destroy(struct mspack_system *sys)
{
free(sys);
}
#if defined(_WIN32)
inline bool bitScanForward(uint32_t v, uint32_t *outFirstSetIndex)
{
return _BitScanForward((unsigned long *)(outFirstSetIndex), v) != 0;
}
inline bool bitScanForward(uint64_t v, uint32_t *outFirstSetIndex)
{
return _BitScanForward64((unsigned long *)(outFirstSetIndex), v) != 0;
}
#else
inline bool bitScanForward(uint32_t v, uint32_t *outFirstSetIndex)
{
int i = ffs(v);
*outFirstSetIndex = i - 1;
return i != 0;
}
inline bool bitScanForward(uint64_t v, uint32_t *outFirstSetIndex)
{
int i = __builtin_ffsll(v);
*outFirstSetIndex = i - 1;
return i != 0;
}
#endif
static int lzxDecompress(const void *lzxData, size_t lzxLength, void *dst, size_t dstLength, uint32_t windowSize, void *windowData, size_t windowDataLength)
{
int resultCode = 1;
uint32_t windowBits;
if (!bitScanForward(windowSize, &windowBits)) {
return resultCode;
}
mspack_system *sys = mspack_memory_sys_create();
mspack_memory_file *lzxSrc = mspack_memory_open(sys, (void *)(lzxData), lzxLength);
mspack_memory_file *lzxDst = mspack_memory_open(sys, dst, dstLength);
lzxd_stream *lzxd = lzxd_init(sys, (mspack_file *)(lzxSrc), (mspack_file *)(lzxDst), windowBits, 0, 0x8000, dstLength, 0);
if (lzxd != nullptr) {
if (windowData != nullptr) {
size_t paddingLength = windowSize - windowDataLength;
std::memset(&lzxd->window[0], 0, paddingLength);
std::memcpy(&lzxd->window[paddingLength], windowData, windowDataLength);
lzxd->ref_data_size = windowSize;
}
resultCode = lzxd_decompress(lzxd, dstLength);
lzxd_free(lzxd);
}
if (lzxSrc) {
mspack_memory_close(lzxSrc);
}
if (lzxDst) {
mspack_memory_close(lzxDst);
}
if (sys) {
mspack_memory_sys_destroy(sys);
}
return resultCode;
}
static int lzxDeltaApplyPatch(const Xex2DeltaPatch *deltaPatch, uint32_t patchLength, uint32_t windowSize, uint8_t *dstData)
{
const void *patchEnd = (const uint8_t *)(deltaPatch) + patchLength;
const Xex2DeltaPatch *curPatch = deltaPatch;
while (patchEnd > curPatch)
{
int patchSize = -4;
if (curPatch->compressedLength == 0 && curPatch->uncompressedLength == 0 && curPatch->newAddress == 0 && curPatch->oldAddress == 0)
{
// End of patch.
break;
}
switch (curPatch->compressedLength)
{
case 0:
// Set the data to zeroes.
std::memset(&dstData[curPatch->newAddress], 0, curPatch->uncompressedLength);
break;
case 1:
// Move the data.
std::memcpy(&dstData[curPatch->newAddress], &dstData[curPatch->oldAddress], curPatch->uncompressedLength);
break;
default:
// Decompress the data into the destination.
patchSize = curPatch->compressedLength - 4;
int result = lzxDecompress(curPatch->patchData, curPatch->compressedLength, &dstData[curPatch->newAddress], curPatch->uncompressedLength, windowSize, &dstData[curPatch->oldAddress], curPatch->uncompressedLength);
if (result != 0)
{
return result;
}
break;
}
curPatch++;
curPatch = (const Xex2DeltaPatch *)((const uint8_t *)(curPatch) + patchSize);
}
return 0;
}
XexPatcher::Result XexPatcher::apply(const uint8_t* xexBytes, size_t xexBytesSize, const uint8_t* patchBytes, size_t patchBytesSize, std::vector<uint8_t> &outBytes, bool skipData)
{
// Validate headers.
static const char Xex2Magic[] = "XEX2";
const Xex2Header *xexHeader = (const Xex2Header *)(xexBytes);
if (memcmp(xexBytes, Xex2Magic, 4) != 0)
{
return Result::XexFileInvalid;
}
const Xex2Header *patchHeader = (const Xex2Header *)(patchBytes);
if (memcmp(patchBytes, Xex2Magic, 4) != 0)
{
return Result::PatchFileInvalid;
}
if ((patchHeader->moduleFlags & (XEX_MODULE_MODULE_PATCH | XEX_MODULE_PATCH_DELTA | XEX_MODULE_PATCH_FULL)) == 0)
{
return Result::PatchFileInvalid;
}
// Validate patch.
const Xex2OptDeltaPatchDescriptor *patchDescriptor = (const Xex2OptDeltaPatchDescriptor *)(getOptHeaderPtr(patchBytes, XEX_HEADER_DELTA_PATCH_DESCRIPTOR));
if (patchDescriptor == nullptr)
{
return Result::PatchFileInvalid;
}
const Xex2OptFileFormatInfo *patchFileFormatInfo = (const Xex2OptFileFormatInfo *)(getOptHeaderPtr(patchBytes, XEX_HEADER_FILE_FORMAT_INFO));
if (patchFileFormatInfo == nullptr)
{
return Result::PatchFileInvalid;
}
if (patchFileFormatInfo->compressionType != XEX_COMPRESSION_DELTA)
{
return Result::PatchFileInvalid;
}
if (patchDescriptor->deltaHeadersSourceOffset > xexHeader->headerSize)
{
return Result::PatchIncompatible;
}
if (patchDescriptor->deltaHeadersSourceSize > (xexHeader->headerSize - patchDescriptor->deltaHeadersSourceOffset))
{
return Result::PatchIncompatible;
}
if (patchDescriptor->deltaHeadersTargetOffset > patchDescriptor->sizeOfTargetHeaders)
{
return Result::PatchIncompatible;
}
uint32_t deltaTargetSize = patchDescriptor->sizeOfTargetHeaders - patchDescriptor->deltaHeadersTargetOffset;
if (patchDescriptor->deltaHeadersSourceSize > deltaTargetSize)
{
return Result::PatchIncompatible;
}
// Apply patch.
uint32_t headerTargetSize = patchDescriptor->sizeOfTargetHeaders;
if (headerTargetSize == 0)
{
headerTargetSize = patchDescriptor->deltaHeadersTargetOffset + patchDescriptor->deltaHeadersSourceSize;
}
// Create the bytes for the new XEX header. Copy over the existing data.
uint32_t newXexHeaderSize = std::max(headerTargetSize, xexHeader->headerSize.get());
outBytes.resize(newXexHeaderSize);
memset(outBytes.data(), 0, newXexHeaderSize);
memcpy(outBytes.data(), xexBytes, headerTargetSize);
Xex2Header *newXexHeader = (Xex2Header *)(outBytes.data());
if (patchDescriptor->deltaHeadersSourceOffset > 0)
{
memcpy(&outBytes[patchDescriptor->deltaHeadersTargetOffset], &outBytes[patchDescriptor->deltaHeadersSourceOffset], patchDescriptor->deltaHeadersSourceSize);
}
int resultCode = lzxDeltaApplyPatch(&patchDescriptor->info, patchDescriptor->size, ((const Xex2FileNormalCompressionInfo*)(patchFileFormatInfo + 1))->windowSize, outBytes.data());
if (resultCode != 0)
{
return Result::PatchFailed;
}
// Make the header the specified size by the patch.
outBytes.resize(headerTargetSize);
newXexHeader = (Xex2Header *)(outBytes.data());
// Copy the rest of the data.
const Xex2SecurityInfo *newSecurityInfo = (const Xex2SecurityInfo *)(&outBytes[newXexHeader->securityOffset]);
outBytes.resize(outBytes.size() + newSecurityInfo->imageSize);
memset(&outBytes[headerTargetSize], 0, outBytes.size() - headerTargetSize);
memcpy(&outBytes[headerTargetSize], &xexBytes[xexHeader->headerSize], xexBytesSize - xexHeader->headerSize);
newXexHeader = (Xex2Header *)(outBytes.data());
newSecurityInfo = (const Xex2SecurityInfo *)(&outBytes[newXexHeader->securityOffset]);
// Decrypt the keys and validate that the patch is compatible with the base file.
constexpr uint32_t KeySize = 16;
const Xex2SecurityInfo *originalSecurityInfo = (const Xex2SecurityInfo *)(&xexBytes[xexHeader->securityOffset]);
const Xex2SecurityInfo *patchSecurityInfo = (const Xex2SecurityInfo *)(&patchBytes[patchHeader->securityOffset]);
uint8_t decryptedOriginalKey[KeySize];
uint8_t decryptedNewKey[KeySize];
uint8_t decryptedPatchKey[KeySize];
uint8_t decrpytedImageKeySource[KeySize];
memcpy(decryptedOriginalKey, originalSecurityInfo->aesKey, KeySize);
memcpy(decryptedNewKey, newSecurityInfo->aesKey, KeySize);
memcpy(decryptedPatchKey, patchSecurityInfo->aesKey, KeySize);
memcpy(decrpytedImageKeySource, patchDescriptor->imageKeySource, KeySize);
AES_ctx aesContext;
AES_init_ctx_iv(&aesContext, Xex2RetailKey, AESBlankIV);
AES_CBC_decrypt_buffer(&aesContext, decryptedOriginalKey, KeySize);
AES_ctx_set_iv(&aesContext, AESBlankIV);
AES_CBC_decrypt_buffer(&aesContext, decryptedNewKey, KeySize);
AES_init_ctx_iv(&aesContext, decryptedNewKey, AESBlankIV);
AES_CBC_decrypt_buffer(&aesContext, decryptedPatchKey, KeySize);
AES_ctx_set_iv(&aesContext, AESBlankIV);
AES_CBC_decrypt_buffer(&aesContext, decrpytedImageKeySource, KeySize);
// Validate the patch's key matches the one from the original XEX.
if (memcmp(decrpytedImageKeySource, decryptedOriginalKey, KeySize) != 0)
{
return Result::PatchIncompatible;
}
// Don't process the rest of the patch.
if (skipData)
{
return Result::Success;
}
// Decrypt base XEX if necessary.
const Xex2OptFileFormatInfo *fileFormatInfo = (const Xex2OptFileFormatInfo *)(getOptHeaderPtr(xexBytes, XEX_HEADER_FILE_FORMAT_INFO));
if (fileFormatInfo == nullptr)
{
return Result::XexFileInvalid;
}
if (fileFormatInfo->encryptionType == XEX_ENCRYPTION_NORMAL)
{
AES_init_ctx_iv(&aesContext, decryptedOriginalKey, AESBlankIV);
AES_CBC_decrypt_buffer(&aesContext, &outBytes[headerTargetSize], xexBytesSize - xexHeader->headerSize);
}
else if (fileFormatInfo->encryptionType != XEX_ENCRYPTION_NONE)
{
return Result::XexFileInvalid;
}
// Decompress base XEX if necessary.
if (fileFormatInfo->compressionType == XEX_COMPRESSION_BASIC)
{
const Xex2FileBasicCompressionBlock *blocks = &((const Xex2FileBasicCompressionInfo*)(fileFormatInfo + 1))->firstBlock;
int32_t numBlocks = (fileFormatInfo->infoSize / sizeof(Xex2FileBasicCompressionBlock)) - 1;
int32_t baseCompressedSize = 0;
int32_t baseImageSize = 0;
for (int32_t i = 0; i < numBlocks; i++) {
baseCompressedSize += blocks[i].dataSize;
baseImageSize += blocks[i].dataSize + blocks[i].zeroSize;
}
if (outBytes.size() < (headerTargetSize + baseImageSize))
{
return Result::XexFileInvalid;
}
// Reverse iteration allows to perform this decompression in place.
uint8_t *srcDataCursor = outBytes.data() + headerTargetSize + baseCompressedSize;
uint8_t *outDataCursor = outBytes.data() + headerTargetSize + baseImageSize;
for (int32_t i = numBlocks - 1; i >= 0; i--)
{
outDataCursor -= blocks[i].zeroSize;
memset(outDataCursor, 0, blocks[i].zeroSize);
outDataCursor -= blocks[i].dataSize;
srcDataCursor -= blocks[i].dataSize;
memmove(outDataCursor, srcDataCursor, blocks[i].dataSize);
}
}
else if (fileFormatInfo->compressionType == XEX_COMPRESSION_NORMAL || fileFormatInfo->compressionType == XEX_COMPRESSION_DELTA)
{
return Result::XexFileUnsupported;
}
else if (fileFormatInfo->compressionType != XEX_COMPRESSION_NONE)
{
return Result::XexFileInvalid;
}
Xex2OptFileFormatInfo *newFileFormatInfo = (Xex2OptFileFormatInfo *)(getOptHeaderPtr(outBytes.data(), XEX_HEADER_FILE_FORMAT_INFO));
if (newFileFormatInfo == nullptr)
{
return Result::PatchFailed;
}
// Update the header to indicate no encryption or compression is used.
newFileFormatInfo->encryptionType = XEX_ENCRYPTION_NONE;
newFileFormatInfo->compressionType = XEX_COMPRESSION_NONE;
// Copy and decrypt patch data if necessary.
std::vector<uint8_t> patchData;
patchData.resize(patchBytesSize - patchHeader->headerSize);
memcpy(patchData.data(), &patchBytes[patchHeader->headerSize], patchData.size());
if (patchFileFormatInfo->encryptionType == XEX_ENCRYPTION_NORMAL)
{
AES_init_ctx_iv(&aesContext, decryptedPatchKey, AESBlankIV);
AES_CBC_decrypt_buffer(&aesContext, patchData.data(), patchData.size());
}
else if (patchFileFormatInfo->encryptionType != XEX_ENCRYPTION_NONE)
{
return Result::PatchFileInvalid;
}
const Xex2CompressedBlockInfo *currentBlock = &((const Xex2FileNormalCompressionInfo*)(patchFileFormatInfo + 1))->firstBlock;
uint8_t *outExe = &outBytes[newXexHeader->headerSize];
if (patchDescriptor->deltaImageSourceOffset > 0)
{
memcpy(&outExe[patchDescriptor->deltaImageTargetOffset], &outExe[patchDescriptor->deltaImageSourceOffset], patchDescriptor->deltaImageSourceSize);
}
static const uint32_t DigestSize = 20;
uint8_t sha1Digest[DigestSize];
sha1::SHA1 sha1Context;
uint8_t *patchDataCursor = patchData.data();
while (currentBlock->blockSize > 0)
{
const Xex2CompressedBlockInfo *nextBlock = (const Xex2CompressedBlockInfo *)(patchDataCursor);
// Hash and validate the block.
sha1Context.reset();
sha1Context.processBytes(patchDataCursor, currentBlock->blockSize);
sha1Context.finalize(sha1Digest);
if (memcmp(sha1Digest, currentBlock->blockHash, DigestSize) != 0)
{
return Result::PatchFailed;
}
patchDataCursor += 24;
// Apply the block's patch data.
uint32_t blockDataSize = currentBlock->blockSize - 24;
if (lzxDeltaApplyPatch((const Xex2DeltaPatch *)(patchDataCursor), blockDataSize, ((const Xex2FileNormalCompressionInfo*)(patchFileFormatInfo + 1))->windowSize, outExe) != 0)
{
return Result::PatchFailed;
}
patchDataCursor += blockDataSize;
currentBlock = nextBlock;
}
return Result::Success;
}
XexPatcher::Result XexPatcher::apply(const std::filesystem::path &baseXexPath, const std::filesystem::path &patchXexPath, const std::filesystem::path &newXexPath)
{
MemoryMappedFile baseXexFile(baseXexPath);
MemoryMappedFile patchFile(patchXexPath);
if (!baseXexFile.isOpen() || !patchFile.isOpen())
{
return Result::FileOpenFailed;
}
std::vector<uint8_t> newXexBytes;
Result result = apply(baseXexFile.data(), baseXexFile.size(), patchFile.data(), patchFile.size(), newXexBytes, false);
if (result != Result::Success)
{
return result;
}
std::ofstream newXexFile(newXexPath, std::ios::binary);
if (!newXexFile.is_open())
{
return Result::FileOpenFailed;
}
newXexFile.write((const char *)(newXexBytes.data()), newXexBytes.size());
newXexFile.close();
if (newXexFile.bad())
{
std::filesystem::remove(newXexPath);
return Result::FileWriteFailed;
}
return Result::Success;
}