nsite-ts/public/lib/nostr-picture.js

4051 lines
130 KiB
JavaScript
Raw Normal View History

2024-09-26 16:03:28 -05:00
"use strict";
(() => {
var __create = Object.create;
var __defProp = Object.defineProperty;
var __getOwnPropDesc = Object.getOwnPropertyDescriptor;
var __getOwnPropNames = Object.getOwnPropertyNames;
var __getProtoOf = Object.getPrototypeOf;
var __hasOwnProp = Object.prototype.hasOwnProperty;
var __defNormalProp = (obj, key, value) => key in obj ? __defProp(obj, key, { enumerable: true, configurable: true, writable: true, value }) : obj[key] = value;
var __commonJS = (cb, mod2) => function __require() {
return mod2 || (0, cb[__getOwnPropNames(cb)[0]])((mod2 = { exports: {} }).exports, mod2), mod2.exports;
};
var __export = (target, all) => {
for (var name in all)
__defProp(target, name, { get: all[name], enumerable: true });
};
var __copyProps = (to, from, except, desc) => {
if (from && typeof from === "object" || typeof from === "function") {
for (let key of __getOwnPropNames(from))
if (!__hasOwnProp.call(to, key) && key !== except)
__defProp(to, key, { get: () => from[key], enumerable: !(desc = __getOwnPropDesc(from, key)) || desc.enumerable });
}
return to;
};
var __toESM = (mod2, isNodeMode, target) => (target = mod2 != null ? __create(__getProtoOf(mod2)) : {}, __copyProps(
isNodeMode || !mod2 || !mod2.__esModule ? __defProp(target, "default", { value: mod2, enumerable: true }) : target,
mod2
));
var __publicField = (obj, key, value) => {
__defNormalProp(obj, typeof key !== "symbol" ? key + "" : key, value);
return value;
};
// node_modules/obliterator/iterator.js
var require_iterator = __commonJS({
"node_modules/obliterator/iterator.js"(exports, module) {
function Iterator(next) {
if (typeof next !== "function")
throw new Error("obliterator/iterator: expecting a function!");
this.next = next;
}
if (typeof Symbol !== "undefined")
Iterator.prototype[Symbol.iterator] = function() {
return this;
};
Iterator.of = function() {
var args = arguments, l = args.length, i2 = 0;
return new Iterator(function() {
if (i2 >= l)
return { done: true };
return { done: false, value: args[i2++] };
});
};
Iterator.empty = function() {
var iterator = new Iterator(function() {
return { done: true };
});
return iterator;
};
Iterator.fromSequence = function(sequence) {
var i2 = 0, l = sequence.length;
return new Iterator(function() {
if (i2 >= l)
return { done: true };
return { done: false, value: sequence[i2++] };
});
};
Iterator.is = function(value) {
if (value instanceof Iterator)
return true;
return typeof value === "object" && value !== null && typeof value.next === "function";
};
module.exports = Iterator;
}
});
// node_modules/obliterator/support.js
var require_support = __commonJS({
"node_modules/obliterator/support.js"(exports) {
exports.ARRAY_BUFFER_SUPPORT = typeof ArrayBuffer !== "undefined";
exports.SYMBOL_SUPPORT = typeof Symbol !== "undefined";
}
});
// node_modules/obliterator/foreach.js
var require_foreach = __commonJS({
"node_modules/obliterator/foreach.js"(exports, module) {
var support = require_support();
var ARRAY_BUFFER_SUPPORT = support.ARRAY_BUFFER_SUPPORT;
var SYMBOL_SUPPORT = support.SYMBOL_SUPPORT;
module.exports = function forEach(iterable, callback) {
var iterator, k, i2, l, s;
if (!iterable)
throw new Error("obliterator/forEach: invalid iterable.");
if (typeof callback !== "function")
throw new Error("obliterator/forEach: expecting a callback.");
if (Array.isArray(iterable) || ARRAY_BUFFER_SUPPORT && ArrayBuffer.isView(iterable) || typeof iterable === "string" || iterable.toString() === "[object Arguments]") {
for (i2 = 0, l = iterable.length; i2 < l; i2++)
callback(iterable[i2], i2);
return;
}
if (typeof iterable.forEach === "function") {
iterable.forEach(callback);
return;
}
if (SYMBOL_SUPPORT && Symbol.iterator in iterable && typeof iterable.next !== "function") {
iterable = iterable[Symbol.iterator]();
}
if (typeof iterable.next === "function") {
iterator = iterable;
i2 = 0;
while (s = iterator.next(), s.done !== true) {
callback(s.value, i2);
i2++;
}
return;
}
for (k in iterable) {
if (iterable.hasOwnProperty(k)) {
callback(iterable[k], k);
}
}
return;
};
}
});
// node_modules/mnemonist/utils/typed-arrays.js
var require_typed_arrays = __commonJS({
"node_modules/mnemonist/utils/typed-arrays.js"(exports) {
var MAX_8BIT_INTEGER = Math.pow(2, 8) - 1;
var MAX_16BIT_INTEGER = Math.pow(2, 16) - 1;
var MAX_32BIT_INTEGER = Math.pow(2, 32) - 1;
var MAX_SIGNED_8BIT_INTEGER = Math.pow(2, 7) - 1;
var MAX_SIGNED_16BIT_INTEGER = Math.pow(2, 15) - 1;
var MAX_SIGNED_32BIT_INTEGER = Math.pow(2, 31) - 1;
exports.getPointerArray = function(size) {
var maxIndex = size - 1;
if (maxIndex <= MAX_8BIT_INTEGER)
return Uint8Array;
if (maxIndex <= MAX_16BIT_INTEGER)
return Uint16Array;
if (maxIndex <= MAX_32BIT_INTEGER)
return Uint32Array;
throw new Error("mnemonist: Pointer Array of size > 4294967295 is not supported.");
};
exports.getSignedPointerArray = function(size) {
var maxIndex = size - 1;
if (maxIndex <= MAX_SIGNED_8BIT_INTEGER)
return Int8Array;
if (maxIndex <= MAX_SIGNED_16BIT_INTEGER)
return Int16Array;
if (maxIndex <= MAX_SIGNED_32BIT_INTEGER)
return Int32Array;
return Float64Array;
};
exports.getNumberType = function(value) {
if (value === (value | 0)) {
if (Math.sign(value) === -1) {
if (value <= 127 && value >= -128)
return Int8Array;
if (value <= 32767 && value >= -32768)
return Int16Array;
return Int32Array;
} else {
if (value <= 255)
return Uint8Array;
if (value <= 65535)
return Uint16Array;
return Uint32Array;
}
}
return Float64Array;
};
var TYPE_PRIORITY = {
Uint8Array: 1,
Int8Array: 2,
Uint16Array: 3,
Int16Array: 4,
Uint32Array: 5,
Int32Array: 6,
Float32Array: 7,
Float64Array: 8
};
exports.getMinimalRepresentation = function(array, getter) {
var maxType = null, maxPriority = 0, p, t, v, i2, l;
for (i2 = 0, l = array.length; i2 < l; i2++) {
v = getter ? getter(array[i2]) : array[i2];
t = exports.getNumberType(v);
p = TYPE_PRIORITY[t.name];
if (p > maxPriority) {
maxPriority = p;
maxType = t;
}
}
return maxType;
};
exports.isTypedArray = function(value) {
return typeof ArrayBuffer !== "undefined" && ArrayBuffer.isView(value);
};
exports.concat = function() {
var length = 0, i2, o, l;
for (i2 = 0, l = arguments.length; i2 < l; i2++)
length += arguments[i2].length;
var array = new arguments[0].constructor(length);
for (i2 = 0, o = 0; i2 < l; i2++) {
array.set(arguments[i2], o);
o += arguments[i2].length;
}
return array;
};
exports.indices = function(length) {
var PointerArray = exports.getPointerArray(length);
var array = new PointerArray(length);
for (var i2 = 0; i2 < length; i2++)
array[i2] = i2;
return array;
};
}
});
// node_modules/mnemonist/utils/iterables.js
var require_iterables = __commonJS({
"node_modules/mnemonist/utils/iterables.js"(exports) {
var forEach = require_foreach();
var typed = require_typed_arrays();
function isArrayLike(target) {
return Array.isArray(target) || typed.isTypedArray(target);
}
function guessLength(target) {
if (typeof target.length === "number")
return target.length;
if (typeof target.size === "number")
return target.size;
return;
}
function toArray(target) {
var l = guessLength(target);
var array = typeof l === "number" ? new Array(l) : [];
var i2 = 0;
forEach(target, function(value) {
array[i2++] = value;
});
return array;
}
function toArrayWithIndices(target) {
var l = guessLength(target);
var IndexArray = typeof l === "number" ? typed.getPointerArray(l) : Array;
var array = typeof l === "number" ? new Array(l) : [];
var indices = typeof l === "number" ? new IndexArray(l) : [];
var i2 = 0;
forEach(target, function(value) {
array[i2] = value;
indices[i2] = i2++;
});
return [array, indices];
}
exports.isArrayLike = isArrayLike;
exports.guessLength = guessLength;
exports.toArray = toArray;
exports.toArrayWithIndices = toArrayWithIndices;
}
});
// node_modules/mnemonist/lru-cache.js
var require_lru_cache = __commonJS({
"node_modules/mnemonist/lru-cache.js"(exports, module) {
var Iterator = require_iterator();
var forEach = require_foreach();
var typed = require_typed_arrays();
var iterables = require_iterables();
function LRUCache2(Keys, Values, capacity) {
if (arguments.length < 2) {
capacity = Keys;
Keys = null;
Values = null;
}
this.capacity = capacity;
if (typeof this.capacity !== "number" || this.capacity <= 0)
throw new Error("mnemonist/lru-cache: capacity should be positive number.");
else if (!isFinite(this.capacity) || Math.floor(this.capacity) !== this.capacity)
throw new Error("mnemonist/lru-cache: capacity should be a finite positive integer.");
var PointerArray = typed.getPointerArray(capacity);
this.forward = new PointerArray(capacity);
this.backward = new PointerArray(capacity);
this.K = typeof Keys === "function" ? new Keys(capacity) : new Array(capacity);
this.V = typeof Values === "function" ? new Values(capacity) : new Array(capacity);
this.size = 0;
this.head = 0;
this.tail = 0;
this.items = {};
}
LRUCache2.prototype.clear = function() {
this.size = 0;
this.head = 0;
this.tail = 0;
this.items = {};
};
LRUCache2.prototype.splayOnTop = function(pointer) {
var oldHead = this.head;
if (this.head === pointer)
return this;
var previous = this.backward[pointer], next = this.forward[pointer];
if (this.tail === pointer) {
this.tail = previous;
} else {
this.backward[next] = previous;
}
this.forward[previous] = next;
this.backward[oldHead] = pointer;
this.head = pointer;
this.forward[pointer] = oldHead;
return this;
};
LRUCache2.prototype.set = function(key, value) {
var pointer = this.items[key];
if (typeof pointer !== "undefined") {
this.splayOnTop(pointer);
this.V[pointer] = value;
return;
}
if (this.size < this.capacity) {
pointer = this.size++;
} else {
pointer = this.tail;
this.tail = this.backward[pointer];
delete this.items[this.K[pointer]];
}
this.items[key] = pointer;
this.K[pointer] = key;
this.V[pointer] = value;
this.forward[pointer] = this.head;
this.backward[this.head] = pointer;
this.head = pointer;
};
LRUCache2.prototype.setpop = function(key, value) {
var oldValue = null;
var oldKey = null;
var pointer = this.items[key];
if (typeof pointer !== "undefined") {
this.splayOnTop(pointer);
oldValue = this.V[pointer];
this.V[pointer] = value;
return { evicted: false, key, value: oldValue };
}
if (this.size < this.capacity) {
pointer = this.size++;
} else {
pointer = this.tail;
this.tail = this.backward[pointer];
oldValue = this.V[pointer];
oldKey = this.K[pointer];
delete this.items[oldKey];
}
this.items[key] = pointer;
this.K[pointer] = key;
this.V[pointer] = value;
this.forward[pointer] = this.head;
this.backward[this.head] = pointer;
this.head = pointer;
if (oldKey) {
return { evicted: true, key: oldKey, value: oldValue };
} else {
return null;
}
};
LRUCache2.prototype.has = function(key) {
return key in this.items;
};
LRUCache2.prototype.get = function(key) {
var pointer = this.items[key];
if (typeof pointer === "undefined")
return;
this.splayOnTop(pointer);
return this.V[pointer];
};
LRUCache2.prototype.peek = function(key) {
var pointer = this.items[key];
if (typeof pointer === "undefined")
return;
return this.V[pointer];
};
LRUCache2.prototype.forEach = function(callback, scope) {
scope = arguments.length > 1 ? scope : this;
var i2 = 0, l = this.size;
var pointer = this.head, keys = this.K, values = this.V, forward = this.forward;
while (i2 < l) {
callback.call(scope, values[pointer], keys[pointer], this);
pointer = forward[pointer];
i2++;
}
};
LRUCache2.prototype.keys = function() {
var i2 = 0, l = this.size;
var pointer = this.head, keys = this.K, forward = this.forward;
return new Iterator(function() {
if (i2 >= l)
return { done: true };
var key = keys[pointer];
i2++;
if (i2 < l)
pointer = forward[pointer];
return {
done: false,
value: key
};
});
};
LRUCache2.prototype.values = function() {
var i2 = 0, l = this.size;
var pointer = this.head, values = this.V, forward = this.forward;
return new Iterator(function() {
if (i2 >= l)
return { done: true };
var value = values[pointer];
i2++;
if (i2 < l)
pointer = forward[pointer];
return {
done: false,
value
};
});
};
LRUCache2.prototype.entries = function() {
var i2 = 0, l = this.size;
var pointer = this.head, keys = this.K, values = this.V, forward = this.forward;
return new Iterator(function() {
if (i2 >= l)
return { done: true };
var key = keys[pointer], value = values[pointer];
i2++;
if (i2 < l)
pointer = forward[pointer];
return {
done: false,
value: [key, value]
};
});
};
if (typeof Symbol !== "undefined")
LRUCache2.prototype[Symbol.iterator] = LRUCache2.prototype.entries;
LRUCache2.prototype.inspect = function() {
var proxy = /* @__PURE__ */ new Map();
var iterator = this.entries(), step;
while (step = iterator.next(), !step.done)
proxy.set(step.value[0], step.value[1]);
Object.defineProperty(proxy, "constructor", {
value: LRUCache2,
enumerable: false
});
return proxy;
};
if (typeof Symbol !== "undefined")
LRUCache2.prototype[Symbol.for("nodejs.util.inspect.custom")] = LRUCache2.prototype.inspect;
LRUCache2.from = function(iterable, Keys, Values, capacity) {
if (arguments.length < 2) {
capacity = iterables.guessLength(iterable);
if (typeof capacity !== "number")
throw new Error("mnemonist/lru-cache.from: could not guess iterable length. Please provide desired capacity as last argument.");
} else if (arguments.length === 2) {
capacity = Keys;
Keys = null;
Values = null;
}
var cache = new LRUCache2(Keys, Values, capacity);
forEach(iterable, function(value, key) {
cache.set(key, value);
});
return cache;
};
module.exports = LRUCache2;
}
});
// node_modules/debounce/index.js
var require_debounce = __commonJS({
"node_modules/debounce/index.js"(exports, module) {
function debounce2(function_, wait = 100, options = {}) {
if (typeof function_ !== "function") {
throw new TypeError(`Expected the first parameter to be a function, got \`${typeof function_}\`.`);
}
if (wait < 0) {
throw new RangeError("`wait` must not be negative.");
}
const { immediate } = typeof options === "boolean" ? { immediate: options } : options;
let storedContext;
let storedArguments;
let timeoutId;
let timestamp;
let result;
function run() {
const callContext = storedContext;
const callArguments = storedArguments;
storedContext = void 0;
storedArguments = void 0;
result = function_.apply(callContext, callArguments);
return result;
}
function later() {
const last = Date.now() - timestamp;
if (last < wait && last >= 0) {
timeoutId = setTimeout(later, wait - last);
} else {
timeoutId = void 0;
if (!immediate) {
result = run();
}
}
}
const debounced = function(...arguments_) {
if (storedContext && this !== storedContext) {
throw new Error("Debounced method called with different contexts.");
}
storedContext = this;
storedArguments = arguments_;
timestamp = Date.now();
const callNow = immediate && !timeoutId;
if (!timeoutId) {
timeoutId = setTimeout(later, wait);
}
if (callNow) {
result = run();
}
return result;
};
debounced.clear = () => {
if (!timeoutId) {
return;
}
clearTimeout(timeoutId);
timeoutId = void 0;
};
debounced.flush = () => {
if (!timeoutId) {
return;
}
debounced.trigger();
};
debounced.trigger = () => {
result = run();
debounced.clear();
};
return debounced;
}
module.exports.debounce = debounce2;
module.exports = debounce2;
}
});
// node_modules/@noble/hashes/esm/crypto.js
var crypto = typeof globalThis === "object" && "crypto" in globalThis ? globalThis.crypto : void 0;
// node_modules/@noble/hashes/esm/utils.js
var u8a = (a) => a instanceof Uint8Array;
var createView = (arr) => new DataView(arr.buffer, arr.byteOffset, arr.byteLength);
var rotr = (word, shift) => word << 32 - shift | word >>> shift;
var isLE = new Uint8Array(new Uint32Array([287454020]).buffer)[0] === 68;
if (!isLE)
throw new Error("Non little-endian hardware is not supported");
var hexes = Array.from({ length: 256 }, (v, i2) => i2.toString(16).padStart(2, "0"));
function bytesToHex(bytes3) {
if (!u8a(bytes3))
throw new Error("Uint8Array expected");
let hex2 = "";
for (let i2 = 0; i2 < bytes3.length; i2++) {
hex2 += hexes[bytes3[i2]];
}
return hex2;
}
function hexToBytes(hex2) {
if (typeof hex2 !== "string")
throw new Error("hex string expected, got " + typeof hex2);
const len = hex2.length;
if (len % 2)
throw new Error("padded hex string expected, got unpadded hex of length " + len);
const array = new Uint8Array(len / 2);
for (let i2 = 0; i2 < array.length; i2++) {
const j = i2 * 2;
const hexByte = hex2.slice(j, j + 2);
const byte = Number.parseInt(hexByte, 16);
if (Number.isNaN(byte) || byte < 0)
throw new Error("Invalid byte sequence");
array[i2] = byte;
}
return array;
}
function utf8ToBytes(str) {
if (typeof str !== "string")
throw new Error(`utf8ToBytes expected string, got ${typeof str}`);
return new Uint8Array(new TextEncoder().encode(str));
}
function toBytes(data) {
if (typeof data === "string")
data = utf8ToBytes(data);
if (!u8a(data))
throw new Error(`expected Uint8Array, got ${typeof data}`);
return data;
}
var Hash = class {
clone() {
return this._cloneInto();
}
};
function wrapConstructor(hashCons) {
const hashC = (msg) => hashCons().update(toBytes(msg)).digest();
const tmp = hashCons();
hashC.outputLen = tmp.outputLen;
hashC.blockLen = tmp.blockLen;
hashC.create = () => hashCons();
return hashC;
}
// node_modules/@scure/base/lib/esm/index.js
function assertNumber(n) {
if (!Number.isSafeInteger(n))
throw new Error(`Wrong integer: ${n}`);
}
function chain(...args) {
const wrap = (a, b) => (c) => a(b(c));
const encode = Array.from(args).reverse().reduce((acc, i2) => acc ? wrap(acc, i2.encode) : i2.encode, void 0);
const decode2 = args.reduce((acc, i2) => acc ? wrap(acc, i2.decode) : i2.decode, void 0);
return { encode, decode: decode2 };
}
function alphabet(alphabet2) {
return {
encode: (digits) => {
if (!Array.isArray(digits) || digits.length && typeof digits[0] !== "number")
throw new Error("alphabet.encode input should be an array of numbers");
return digits.map((i2) => {
assertNumber(i2);
if (i2 < 0 || i2 >= alphabet2.length)
throw new Error(`Digit index outside alphabet: ${i2} (alphabet: ${alphabet2.length})`);
return alphabet2[i2];
});
},
decode: (input) => {
if (!Array.isArray(input) || input.length && typeof input[0] !== "string")
throw new Error("alphabet.decode input should be array of strings");
return input.map((letter) => {
if (typeof letter !== "string")
throw new Error(`alphabet.decode: not string element=${letter}`);
const index = alphabet2.indexOf(letter);
if (index === -1)
throw new Error(`Unknown letter: "${letter}". Allowed: ${alphabet2}`);
return index;
});
}
};
}
function join(separator = "") {
if (typeof separator !== "string")
throw new Error("join separator should be string");
return {
encode: (from) => {
if (!Array.isArray(from) || from.length && typeof from[0] !== "string")
throw new Error("join.encode input should be array of strings");
for (let i2 of from)
if (typeof i2 !== "string")
throw new Error(`join.encode: non-string input=${i2}`);
return from.join(separator);
},
decode: (to) => {
if (typeof to !== "string")
throw new Error("join.decode input should be string");
return to.split(separator);
}
};
}
function padding(bits, chr = "=") {
assertNumber(bits);
if (typeof chr !== "string")
throw new Error("padding chr should be string");
return {
encode(data) {
if (!Array.isArray(data) || data.length && typeof data[0] !== "string")
throw new Error("padding.encode input should be array of strings");
for (let i2 of data)
if (typeof i2 !== "string")
throw new Error(`padding.encode: non-string input=${i2}`);
while (data.length * bits % 8)
data.push(chr);
return data;
},
decode(input) {
if (!Array.isArray(input) || input.length && typeof input[0] !== "string")
throw new Error("padding.encode input should be array of strings");
for (let i2 of input)
if (typeof i2 !== "string")
throw new Error(`padding.decode: non-string input=${i2}`);
let end = input.length;
if (end * bits % 8)
throw new Error("Invalid padding: string should have whole number of bytes");
for (; end > 0 && input[end - 1] === chr; end--) {
if (!((end - 1) * bits % 8))
throw new Error("Invalid padding: string has too much padding");
}
return input.slice(0, end);
}
};
}
function normalize(fn) {
if (typeof fn !== "function")
throw new Error("normalize fn should be function");
return { encode: (from) => from, decode: (to) => fn(to) };
}
function convertRadix(data, from, to) {
if (from < 2)
throw new Error(`convertRadix: wrong from=${from}, base cannot be less than 2`);
if (to < 2)
throw new Error(`convertRadix: wrong to=${to}, base cannot be less than 2`);
if (!Array.isArray(data))
throw new Error("convertRadix: data should be array");
if (!data.length)
return [];
let pos = 0;
const res = [];
const digits = Array.from(data);
digits.forEach((d) => {
assertNumber(d);
if (d < 0 || d >= from)
throw new Error(`Wrong integer: ${d}`);
});
while (true) {
let carry = 0;
let done = true;
for (let i2 = pos; i2 < digits.length; i2++) {
const digit = digits[i2];
const digitBase = from * carry + digit;
if (!Number.isSafeInteger(digitBase) || from * carry / from !== carry || digitBase - digit !== from * carry) {
throw new Error("convertRadix: carry overflow");
}
carry = digitBase % to;
digits[i2] = Math.floor(digitBase / to);
if (!Number.isSafeInteger(digits[i2]) || digits[i2] * to + carry !== digitBase)
throw new Error("convertRadix: carry overflow");
if (!done)
continue;
else if (!digits[i2])
pos = i2;
else
done = false;
}
res.push(carry);
if (done)
break;
}
for (let i2 = 0; i2 < data.length - 1 && data[i2] === 0; i2++)
res.push(0);
return res.reverse();
}
var gcd = (a, b) => !b ? a : gcd(b, a % b);
var radix2carry = (from, to) => from + (to - gcd(from, to));
function convertRadix2(data, from, to, padding2) {
if (!Array.isArray(data))
throw new Error("convertRadix2: data should be array");
if (from <= 0 || from > 32)
throw new Error(`convertRadix2: wrong from=${from}`);
if (to <= 0 || to > 32)
throw new Error(`convertRadix2: wrong to=${to}`);
if (radix2carry(from, to) > 32) {
throw new Error(`convertRadix2: carry overflow from=${from} to=${to} carryBits=${radix2carry(from, to)}`);
}
let carry = 0;
let pos = 0;
const mask = 2 ** to - 1;
const res = [];
for (const n of data) {
assertNumber(n);
if (n >= 2 ** from)
throw new Error(`convertRadix2: invalid data word=${n} from=${from}`);
carry = carry << from | n;
if (pos + from > 32)
throw new Error(`convertRadix2: carry overflow pos=${pos} from=${from}`);
pos += from;
for (; pos >= to; pos -= to)
res.push((carry >> pos - to & mask) >>> 0);
carry &= 2 ** pos - 1;
}
carry = carry << to - pos & mask;
if (!padding2 && pos >= from)
throw new Error("Excess padding");
if (!padding2 && carry)
throw new Error(`Non-zero padding: ${carry}`);
if (padding2 && pos > 0)
res.push(carry >>> 0);
return res;
}
function radix(num) {
assertNumber(num);
return {
encode: (bytes3) => {
if (!(bytes3 instanceof Uint8Array))
throw new Error("radix.encode input should be Uint8Array");
return convertRadix(Array.from(bytes3), 2 ** 8, num);
},
decode: (digits) => {
if (!Array.isArray(digits) || digits.length && typeof digits[0] !== "number")
throw new Error("radix.decode input should be array of strings");
return Uint8Array.from(convertRadix(digits, num, 2 ** 8));
}
};
}
function radix2(bits, revPadding = false) {
assertNumber(bits);
if (bits <= 0 || bits > 32)
throw new Error("radix2: bits should be in (0..32]");
if (radix2carry(8, bits) > 32 || radix2carry(bits, 8) > 32)
throw new Error("radix2: carry overflow");
return {
encode: (bytes3) => {
if (!(bytes3 instanceof Uint8Array))
throw new Error("radix2.encode input should be Uint8Array");
return convertRadix2(Array.from(bytes3), 8, bits, !revPadding);
},
decode: (digits) => {
if (!Array.isArray(digits) || digits.length && typeof digits[0] !== "number")
throw new Error("radix2.decode input should be array of strings");
return Uint8Array.from(convertRadix2(digits, bits, 8, revPadding));
}
};
}
function unsafeWrapper(fn) {
if (typeof fn !== "function")
throw new Error("unsafeWrapper fn should be function");
return function(...args) {
try {
return fn.apply(null, args);
} catch (e) {
}
};
}
var base16 = chain(radix2(4), alphabet("0123456789ABCDEF"), join(""));
var base32 = chain(radix2(5), alphabet("ABCDEFGHIJKLMNOPQRSTUVWXYZ234567"), padding(5), join(""));
var base32hex = chain(radix2(5), alphabet("0123456789ABCDEFGHIJKLMNOPQRSTUV"), padding(5), join(""));
var base32crockford = chain(radix2(5), alphabet("0123456789ABCDEFGHJKMNPQRSTVWXYZ"), join(""), normalize((s) => s.toUpperCase().replace(/O/g, "0").replace(/[IL]/g, "1")));
var base64 = chain(radix2(6), alphabet("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"), padding(6), join(""));
var base64url = chain(radix2(6), alphabet("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_"), padding(6), join(""));
var genBase58 = (abc) => chain(radix(58), alphabet(abc), join(""));
var base58 = genBase58("123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz");
var base58flickr = genBase58("123456789abcdefghijkmnopqrstuvwxyzABCDEFGHJKLMNPQRSTUVWXYZ");
var base58xrp = genBase58("rpshnaf39wBUDNEGHJKLM4PQRST7VWXYZ2bcdeCg65jkm8oFqi1tuvAxyz");
var XMR_BLOCK_LEN = [0, 2, 3, 5, 6, 7, 9, 10, 11];
var base58xmr = {
encode(data) {
let res = "";
for (let i2 = 0; i2 < data.length; i2 += 8) {
const block = data.subarray(i2, i2 + 8);
res += base58.encode(block).padStart(XMR_BLOCK_LEN[block.length], "1");
}
return res;
},
decode(str) {
let res = [];
for (let i2 = 0; i2 < str.length; i2 += 11) {
const slice = str.slice(i2, i2 + 11);
const blockLen = XMR_BLOCK_LEN.indexOf(slice.length);
const block = base58.decode(slice);
for (let j = 0; j < block.length - blockLen; j++) {
if (block[j] !== 0)
throw new Error("base58xmr: wrong padding");
}
res = res.concat(Array.from(block.slice(block.length - blockLen)));
}
return Uint8Array.from(res);
}
};
var BECH_ALPHABET = chain(alphabet("qpzry9x8gf2tvdw0s3jn54khce6mua7l"), join(""));
var POLYMOD_GENERATORS = [996825010, 642813549, 513874426, 1027748829, 705979059];
function bech32Polymod(pre) {
const b = pre >> 25;
let chk = (pre & 33554431) << 5;
for (let i2 = 0; i2 < POLYMOD_GENERATORS.length; i2++) {
if ((b >> i2 & 1) === 1)
chk ^= POLYMOD_GENERATORS[i2];
}
return chk;
}
function bechChecksum(prefix, words, encodingConst = 1) {
const len = prefix.length;
let chk = 1;
for (let i2 = 0; i2 < len; i2++) {
const c = prefix.charCodeAt(i2);
if (c < 33 || c > 126)
throw new Error(`Invalid prefix (${prefix})`);
chk = bech32Polymod(chk) ^ c >> 5;
}
chk = bech32Polymod(chk);
for (let i2 = 0; i2 < len; i2++)
chk = bech32Polymod(chk) ^ prefix.charCodeAt(i2) & 31;
for (let v of words)
chk = bech32Polymod(chk) ^ v;
for (let i2 = 0; i2 < 6; i2++)
chk = bech32Polymod(chk);
chk ^= encodingConst;
return BECH_ALPHABET.encode(convertRadix2([chk % 2 ** 30], 30, 5, false));
}
function genBech32(encoding) {
const ENCODING_CONST = encoding === "bech32" ? 1 : 734539939;
const _words = radix2(5);
const fromWords = _words.decode;
const toWords = _words.encode;
const fromWordsUnsafe = unsafeWrapper(fromWords);
function encode(prefix, words, limit = 90) {
if (typeof prefix !== "string")
throw new Error(`bech32.encode prefix should be string, not ${typeof prefix}`);
if (!Array.isArray(words) || words.length && typeof words[0] !== "number")
throw new Error(`bech32.encode words should be array of numbers, not ${typeof words}`);
const actualLength = prefix.length + 7 + words.length;
if (limit !== false && actualLength > limit)
throw new TypeError(`Length ${actualLength} exceeds limit ${limit}`);
prefix = prefix.toLowerCase();
return `${prefix}1${BECH_ALPHABET.encode(words)}${bechChecksum(prefix, words, ENCODING_CONST)}`;
}
function decode2(str, limit = 90) {
if (typeof str !== "string")
throw new Error(`bech32.decode input should be string, not ${typeof str}`);
if (str.length < 8 || limit !== false && str.length > limit)
throw new TypeError(`Wrong string length: ${str.length} (${str}). Expected (8..${limit})`);
const lowered = str.toLowerCase();
if (str !== lowered && str !== str.toUpperCase())
throw new Error(`String must be lowercase or uppercase`);
str = lowered;
const sepIndex = str.lastIndexOf("1");
if (sepIndex === 0 || sepIndex === -1)
throw new Error(`Letter "1" must be present between prefix and data only`);
const prefix = str.slice(0, sepIndex);
const _words2 = str.slice(sepIndex + 1);
if (_words2.length < 6)
throw new Error("Data must be at least 6 characters long");
const words = BECH_ALPHABET.decode(_words2).slice(0, -6);
const sum = bechChecksum(prefix, words, ENCODING_CONST);
if (!_words2.endsWith(sum))
throw new Error(`Invalid checksum in ${str}: expected "${sum}"`);
return { prefix, words };
}
const decodeUnsafe = unsafeWrapper(decode2);
function decodeToBytes(str) {
const { prefix, words } = decode2(str, false);
return { prefix, words, bytes: fromWords(words) };
}
return { encode, decode: decode2, decodeToBytes, decodeUnsafe, fromWords, fromWordsUnsafe, toWords };
}
var bech32 = genBech32("bech32");
var bech32m = genBech32("bech32m");
var utf8 = {
encode: (data) => new TextDecoder().decode(data),
decode: (str) => new TextEncoder().encode(str)
};
var hex = chain(radix2(4), alphabet("0123456789abcdef"), join(""), normalize((s) => {
if (typeof s !== "string" || s.length % 2)
throw new TypeError(`hex.decode: expected string, got ${typeof s} with length ${s.length}`);
return s.toLowerCase();
}));
var CODERS = {
utf8,
hex,
base16,
base32,
base64,
base64url,
base58,
base58xmr
};
var coderTypeError = `Invalid encoding type. Available types: ${Object.keys(CODERS).join(", ")}`;
// node_modules/nostr-tools/lib/esm/nip19.js
var utf8Decoder = new TextDecoder("utf-8");
var utf8Encoder = new TextEncoder();
var Bech32MaxSize = 5e3;
function decode(nip19) {
let { prefix, words } = bech32.decode(nip19, Bech32MaxSize);
let data = new Uint8Array(bech32.fromWords(words));
switch (prefix) {
case "nprofile": {
let tlv = parseTLV(data);
if (!tlv[0]?.[0])
throw new Error("missing TLV 0 for nprofile");
if (tlv[0][0].length !== 32)
throw new Error("TLV 0 should be 32 bytes");
return {
type: "nprofile",
data: {
pubkey: bytesToHex(tlv[0][0]),
relays: tlv[1] ? tlv[1].map((d) => utf8Decoder.decode(d)) : []
}
};
}
case "nevent": {
let tlv = parseTLV(data);
if (!tlv[0]?.[0])
throw new Error("missing TLV 0 for nevent");
if (tlv[0][0].length !== 32)
throw new Error("TLV 0 should be 32 bytes");
if (tlv[2] && tlv[2][0].length !== 32)
throw new Error("TLV 2 should be 32 bytes");
if (tlv[3] && tlv[3][0].length !== 4)
throw new Error("TLV 3 should be 4 bytes");
return {
type: "nevent",
data: {
id: bytesToHex(tlv[0][0]),
relays: tlv[1] ? tlv[1].map((d) => utf8Decoder.decode(d)) : [],
author: tlv[2]?.[0] ? bytesToHex(tlv[2][0]) : void 0,
kind: tlv[3]?.[0] ? parseInt(bytesToHex(tlv[3][0]), 16) : void 0
}
};
}
case "naddr": {
let tlv = parseTLV(data);
if (!tlv[0]?.[0])
throw new Error("missing TLV 0 for naddr");
if (!tlv[2]?.[0])
throw new Error("missing TLV 2 for naddr");
if (tlv[2][0].length !== 32)
throw new Error("TLV 2 should be 32 bytes");
if (!tlv[3]?.[0])
throw new Error("missing TLV 3 for naddr");
if (tlv[3][0].length !== 4)
throw new Error("TLV 3 should be 4 bytes");
return {
type: "naddr",
data: {
identifier: utf8Decoder.decode(tlv[0][0]),
pubkey: bytesToHex(tlv[2][0]),
kind: parseInt(bytesToHex(tlv[3][0]), 16),
relays: tlv[1] ? tlv[1].map((d) => utf8Decoder.decode(d)) : []
}
};
}
case "nrelay": {
let tlv = parseTLV(data);
if (!tlv[0]?.[0])
throw new Error("missing TLV 0 for nrelay");
return {
type: "nrelay",
data: utf8Decoder.decode(tlv[0][0])
};
}
case "nsec":
return { type: prefix, data };
case "npub":
case "note":
return { type: prefix, data: bytesToHex(data) };
default:
throw new Error(`unknown prefix ${prefix}`);
}
}
function parseTLV(data) {
let result = {};
let rest = data;
while (rest.length > 0) {
let t = rest[0];
let l = rest[1];
let v = rest.slice(2, 2 + l);
rest = rest.slice(2 + l);
if (v.length < l)
throw new Error(`not enough data to read on TLV ${t}`);
result[t] = result[t] || [];
result[t].push(v);
}
return result;
}
function npubEncode(hex2) {
return encodeBytes("npub", hexToBytes(hex2));
}
function encodeBech32(prefix, data) {
let words = bech32.toWords(data);
return bech32.encode(prefix, words, Bech32MaxSize);
}
function encodeBytes(prefix, bytes3) {
return encodeBech32(prefix, bytes3);
}
// node_modules/@noble/curves/node_modules/@noble/hashes/esm/_assert.js
function number(n) {
if (!Number.isSafeInteger(n) || n < 0)
throw new Error(`Wrong positive integer: ${n}`);
}
function bytes(b, ...lengths) {
if (!(b instanceof Uint8Array))
throw new Error("Expected Uint8Array");
if (lengths.length > 0 && !lengths.includes(b.length))
throw new Error(`Expected Uint8Array of length ${lengths}, not of length=${b.length}`);
}
function hash(hash3) {
if (typeof hash3 !== "function" || typeof hash3.create !== "function")
throw new Error("Hash should be wrapped by utils.wrapConstructor");
number(hash3.outputLen);
number(hash3.blockLen);
}
function exists(instance, checkFinished = true) {
if (instance.destroyed)
throw new Error("Hash instance has been destroyed");
if (checkFinished && instance.finished)
throw new Error("Hash#digest() has already been called");
}
function output(out, instance) {
bytes(out);
const min = instance.outputLen;
if (out.length < min) {
throw new Error(`digestInto() expects output buffer of length at least ${min}`);
}
}
// node_modules/@noble/curves/node_modules/@noble/hashes/esm/crypto.js
var crypto2 = typeof globalThis === "object" && "crypto" in globalThis ? globalThis.crypto : void 0;
// node_modules/@noble/curves/node_modules/@noble/hashes/esm/utils.js
var u8a2 = (a) => a instanceof Uint8Array;
var createView2 = (arr) => new DataView(arr.buffer, arr.byteOffset, arr.byteLength);
var rotr2 = (word, shift) => word << 32 - shift | word >>> shift;
var isLE2 = new Uint8Array(new Uint32Array([287454020]).buffer)[0] === 68;
if (!isLE2)
throw new Error("Non little-endian hardware is not supported");
function utf8ToBytes2(str) {
if (typeof str !== "string")
throw new Error(`utf8ToBytes expected string, got ${typeof str}`);
return new Uint8Array(new TextEncoder().encode(str));
}
function toBytes2(data) {
if (typeof data === "string")
data = utf8ToBytes2(data);
if (!u8a2(data))
throw new Error(`expected Uint8Array, got ${typeof data}`);
return data;
}
function concatBytes2(...arrays) {
const r = new Uint8Array(arrays.reduce((sum, a) => sum + a.length, 0));
let pad = 0;
arrays.forEach((a) => {
if (!u8a2(a))
throw new Error("Uint8Array expected");
r.set(a, pad);
pad += a.length;
});
return r;
}
var Hash2 = class {
clone() {
return this._cloneInto();
}
};
var toStr = {}.toString;
function wrapConstructor2(hashCons) {
const hashC = (msg) => hashCons().update(toBytes2(msg)).digest();
const tmp = hashCons();
hashC.outputLen = tmp.outputLen;
hashC.blockLen = tmp.blockLen;
hashC.create = () => hashCons();
return hashC;
}
function randomBytes(bytesLength = 32) {
if (crypto2 && typeof crypto2.getRandomValues === "function") {
return crypto2.getRandomValues(new Uint8Array(bytesLength));
}
throw new Error("crypto.getRandomValues must be defined");
}
// node_modules/@noble/curves/node_modules/@noble/hashes/esm/_sha2.js
function setBigUint64(view, byteOffset, value, isLE3) {
if (typeof view.setBigUint64 === "function")
return view.setBigUint64(byteOffset, value, isLE3);
const _32n = BigInt(32);
const _u32_max = BigInt(4294967295);
const wh = Number(value >> _32n & _u32_max);
const wl = Number(value & _u32_max);
const h = isLE3 ? 4 : 0;
const l = isLE3 ? 0 : 4;
view.setUint32(byteOffset + h, wh, isLE3);
view.setUint32(byteOffset + l, wl, isLE3);
}
var SHA2 = class extends Hash2 {
constructor(blockLen, outputLen, padOffset, isLE3) {
super();
this.blockLen = blockLen;
this.outputLen = outputLen;
this.padOffset = padOffset;
this.isLE = isLE3;
this.finished = false;
this.length = 0;
this.pos = 0;
this.destroyed = false;
this.buffer = new Uint8Array(blockLen);
this.view = createView2(this.buffer);
}
update(data) {
exists(this);
const { view, buffer, blockLen } = this;
data = toBytes2(data);
const len = data.length;
for (let pos = 0; pos < len; ) {
const take = Math.min(blockLen - this.pos, len - pos);
if (take === blockLen) {
const dataView = createView2(data);
for (; blockLen <= len - pos; pos += blockLen)
this.process(dataView, pos);
continue;
}
buffer.set(data.subarray(pos, pos + take), this.pos);
this.pos += take;
pos += take;
if (this.pos === blockLen) {
this.process(view, 0);
this.pos = 0;
}
}
this.length += data.length;
this.roundClean();
return this;
}
digestInto(out) {
exists(this);
output(out, this);
this.finished = true;
const { buffer, view, blockLen, isLE: isLE3 } = this;
let { pos } = this;
buffer[pos++] = 128;
this.buffer.subarray(pos).fill(0);
if (this.padOffset > blockLen - pos) {
this.process(view, 0);
pos = 0;
}
for (let i2 = pos; i2 < blockLen; i2++)
buffer[i2] = 0;
setBigUint64(view, blockLen - 8, BigInt(this.length * 8), isLE3);
this.process(view, 0);
const oview = createView2(out);
const len = this.outputLen;
if (len % 4)
throw new Error("_sha2: outputLen should be aligned to 32bit");
const outLen = len / 4;
const state = this.get();
if (outLen > state.length)
throw new Error("_sha2: outputLen bigger than state");
for (let i2 = 0; i2 < outLen; i2++)
oview.setUint32(4 * i2, state[i2], isLE3);
}
digest() {
const { buffer, outputLen } = this;
this.digestInto(buffer);
const res = buffer.slice(0, outputLen);
this.destroy();
return res;
}
_cloneInto(to) {
to || (to = new this.constructor());
to.set(...this.get());
const { blockLen, buffer, length, finished, destroyed, pos } = this;
to.length = length;
to.pos = pos;
to.finished = finished;
to.destroyed = destroyed;
if (length % blockLen)
to.buffer.set(buffer);
return to;
}
};
// node_modules/@noble/curves/node_modules/@noble/hashes/esm/sha256.js
var Chi = (a, b, c) => a & b ^ ~a & c;
var Maj = (a, b, c) => a & b ^ a & c ^ b & c;
var SHA256_K = /* @__PURE__ */ new Uint32Array([
1116352408,
1899447441,
3049323471,
3921009573,
961987163,
1508970993,
2453635748,
2870763221,
3624381080,
310598401,
607225278,
1426881987,
1925078388,
2162078206,
2614888103,
3248222580,
3835390401,
4022224774,
264347078,
604807628,
770255983,
1249150122,
1555081692,
1996064986,
2554220882,
2821834349,
2952996808,
3210313671,
3336571891,
3584528711,
113926993,
338241895,
666307205,
773529912,
1294757372,
1396182291,
1695183700,
1986661051,
2177026350,
2456956037,
2730485921,
2820302411,
3259730800,
3345764771,
3516065817,
3600352804,
4094571909,
275423344,
430227734,
506948616,
659060556,
883997877,
958139571,
1322822218,
1537002063,
1747873779,
1955562222,
2024104815,
2227730452,
2361852424,
2428436474,
2756734187,
3204031479,
3329325298
]);
var IV = /* @__PURE__ */ new Uint32Array([
1779033703,
3144134277,
1013904242,
2773480762,
1359893119,
2600822924,
528734635,
1541459225
]);
var SHA256_W = /* @__PURE__ */ new Uint32Array(64);
var SHA256 = class extends SHA2 {
constructor() {
super(64, 32, 8, false);
this.A = IV[0] | 0;
this.B = IV[1] | 0;
this.C = IV[2] | 0;
this.D = IV[3] | 0;
this.E = IV[4] | 0;
this.F = IV[5] | 0;
this.G = IV[6] | 0;
this.H = IV[7] | 0;
}
get() {
const { A, B, C, D, E, F, G, H } = this;
return [A, B, C, D, E, F, G, H];
}
set(A, B, C, D, E, F, G, H) {
this.A = A | 0;
this.B = B | 0;
this.C = C | 0;
this.D = D | 0;
this.E = E | 0;
this.F = F | 0;
this.G = G | 0;
this.H = H | 0;
}
process(view, offset) {
for (let i2 = 0; i2 < 16; i2++, offset += 4)
SHA256_W[i2] = view.getUint32(offset, false);
for (let i2 = 16; i2 < 64; i2++) {
const W15 = SHA256_W[i2 - 15];
const W2 = SHA256_W[i2 - 2];
const s0 = rotr2(W15, 7) ^ rotr2(W15, 18) ^ W15 >>> 3;
const s1 = rotr2(W2, 17) ^ rotr2(W2, 19) ^ W2 >>> 10;
SHA256_W[i2] = s1 + SHA256_W[i2 - 7] + s0 + SHA256_W[i2 - 16] | 0;
}
let { A, B, C, D, E, F, G, H } = this;
for (let i2 = 0; i2 < 64; i2++) {
const sigma1 = rotr2(E, 6) ^ rotr2(E, 11) ^ rotr2(E, 25);
const T1 = H + sigma1 + Chi(E, F, G) + SHA256_K[i2] + SHA256_W[i2] | 0;
const sigma0 = rotr2(A, 2) ^ rotr2(A, 13) ^ rotr2(A, 22);
const T2 = sigma0 + Maj(A, B, C) | 0;
H = G;
G = F;
F = E;
E = D + T1 | 0;
D = C;
C = B;
B = A;
A = T1 + T2 | 0;
}
A = A + this.A | 0;
B = B + this.B | 0;
C = C + this.C | 0;
D = D + this.D | 0;
E = E + this.E | 0;
F = F + this.F | 0;
G = G + this.G | 0;
H = H + this.H | 0;
this.set(A, B, C, D, E, F, G, H);
}
roundClean() {
SHA256_W.fill(0);
}
destroy() {
this.set(0, 0, 0, 0, 0, 0, 0, 0);
this.buffer.fill(0);
}
};
var sha256 = /* @__PURE__ */ wrapConstructor2(() => new SHA256());
// node_modules/@noble/curves/esm/abstract/utils.js
var utils_exports = {};
__export(utils_exports, {
bitGet: () => bitGet,
bitLen: () => bitLen,
bitMask: () => bitMask,
bitSet: () => bitSet,
bytesToHex: () => bytesToHex2,
bytesToNumberBE: () => bytesToNumberBE,
bytesToNumberLE: () => bytesToNumberLE,
concatBytes: () => concatBytes3,
createHmacDrbg: () => createHmacDrbg,
ensureBytes: () => ensureBytes,
equalBytes: () => equalBytes,
hexToBytes: () => hexToBytes2,
hexToNumber: () => hexToNumber,
numberToBytesBE: () => numberToBytesBE,
numberToBytesLE: () => numberToBytesLE,
numberToHexUnpadded: () => numberToHexUnpadded,
numberToVarBytesBE: () => numberToVarBytesBE,
utf8ToBytes: () => utf8ToBytes3,
validateObject: () => validateObject
});
var _0n = BigInt(0);
var _1n = BigInt(1);
var _2n = BigInt(2);
var u8a3 = (a) => a instanceof Uint8Array;
var hexes2 = /* @__PURE__ */ Array.from({ length: 256 }, (_, i2) => i2.toString(16).padStart(2, "0"));
function bytesToHex2(bytes3) {
if (!u8a3(bytes3))
throw new Error("Uint8Array expected");
let hex2 = "";
for (let i2 = 0; i2 < bytes3.length; i2++) {
hex2 += hexes2[bytes3[i2]];
}
return hex2;
}
function numberToHexUnpadded(num) {
const hex2 = num.toString(16);
return hex2.length & 1 ? `0${hex2}` : hex2;
}
function hexToNumber(hex2) {
if (typeof hex2 !== "string")
throw new Error("hex string expected, got " + typeof hex2);
return BigInt(hex2 === "" ? "0" : `0x${hex2}`);
}
function hexToBytes2(hex2) {
if (typeof hex2 !== "string")
throw new Error("hex string expected, got " + typeof hex2);
const len = hex2.length;
if (len % 2)
throw new Error("padded hex string expected, got unpadded hex of length " + len);
const array = new Uint8Array(len / 2);
for (let i2 = 0; i2 < array.length; i2++) {
const j = i2 * 2;
const hexByte = hex2.slice(j, j + 2);
const byte = Number.parseInt(hexByte, 16);
if (Number.isNaN(byte) || byte < 0)
throw new Error("Invalid byte sequence");
array[i2] = byte;
}
return array;
}
function bytesToNumberBE(bytes3) {
return hexToNumber(bytesToHex2(bytes3));
}
function bytesToNumberLE(bytes3) {
if (!u8a3(bytes3))
throw new Error("Uint8Array expected");
return hexToNumber(bytesToHex2(Uint8Array.from(bytes3).reverse()));
}
function numberToBytesBE(n, len) {
return hexToBytes2(n.toString(16).padStart(len * 2, "0"));
}
function numberToBytesLE(n, len) {
return numberToBytesBE(n, len).reverse();
}
function numberToVarBytesBE(n) {
return hexToBytes2(numberToHexUnpadded(n));
}
function ensureBytes(title, hex2, expectedLength) {
let res;
if (typeof hex2 === "string") {
try {
res = hexToBytes2(hex2);
} catch (e) {
throw new Error(`${title} must be valid hex string, got "${hex2}". Cause: ${e}`);
}
} else if (u8a3(hex2)) {
res = Uint8Array.from(hex2);
} else {
throw new Error(`${title} must be hex string or Uint8Array`);
}
const len = res.length;
if (typeof expectedLength === "number" && len !== expectedLength)
throw new Error(`${title} expected ${expectedLength} bytes, got ${len}`);
return res;
}
function concatBytes3(...arrays) {
const r = new Uint8Array(arrays.reduce((sum, a) => sum + a.length, 0));
let pad = 0;
arrays.forEach((a) => {
if (!u8a3(a))
throw new Error("Uint8Array expected");
r.set(a, pad);
pad += a.length;
});
return r;
}
function equalBytes(b1, b2) {
if (b1.length !== b2.length)
return false;
for (let i2 = 0; i2 < b1.length; i2++)
if (b1[i2] !== b2[i2])
return false;
return true;
}
function utf8ToBytes3(str) {
if (typeof str !== "string")
throw new Error(`utf8ToBytes expected string, got ${typeof str}`);
return new Uint8Array(new TextEncoder().encode(str));
}
function bitLen(n) {
let len;
for (len = 0; n > _0n; n >>= _1n, len += 1)
;
return len;
}
function bitGet(n, pos) {
return n >> BigInt(pos) & _1n;
}
var bitSet = (n, pos, value) => {
return n | (value ? _1n : _0n) << BigInt(pos);
};
var bitMask = (n) => (_2n << BigInt(n - 1)) - _1n;
var u8n = (data) => new Uint8Array(data);
var u8fr = (arr) => Uint8Array.from(arr);
function createHmacDrbg(hashLen, qByteLen, hmacFn) {
if (typeof hashLen !== "number" || hashLen < 2)
throw new Error("hashLen must be a number");
if (typeof qByteLen !== "number" || qByteLen < 2)
throw new Error("qByteLen must be a number");
if (typeof hmacFn !== "function")
throw new Error("hmacFn must be a function");
let v = u8n(hashLen);
let k = u8n(hashLen);
let i2 = 0;
const reset = () => {
v.fill(1);
k.fill(0);
i2 = 0;
};
const h = (...b) => hmacFn(k, v, ...b);
const reseed = (seed = u8n()) => {
k = h(u8fr([0]), seed);
v = h();
if (seed.length === 0)
return;
k = h(u8fr([1]), seed);
v = h();
};
const gen = () => {
if (i2++ >= 1e3)
throw new Error("drbg: tried 1000 values");
let len = 0;
const out = [];
while (len < qByteLen) {
v = h();
const sl = v.slice();
out.push(sl);
len += v.length;
}
return concatBytes3(...out);
};
const genUntil = (seed, pred) => {
reset();
reseed(seed);
let res = void 0;
while (!(res = pred(gen())))
reseed();
reset();
return res;
};
return genUntil;
}
var validatorFns = {
bigint: (val) => typeof val === "bigint",
function: (val) => typeof val === "function",
boolean: (val) => typeof val === "boolean",
string: (val) => typeof val === "string",
stringOrUint8Array: (val) => typeof val === "string" || val instanceof Uint8Array,
isSafeInteger: (val) => Number.isSafeInteger(val),
array: (val) => Array.isArray(val),
field: (val, object) => object.Fp.isValid(val),
hash: (val) => typeof val === "function" && Number.isSafeInteger(val.outputLen)
};
function validateObject(object, validators, optValidators = {}) {
const checkField = (fieldName, type, isOptional) => {
const checkVal = validatorFns[type];
if (typeof checkVal !== "function")
throw new Error(`Invalid validator "${type}", expected function`);
const val = object[fieldName];
if (isOptional && val === void 0)
return;
if (!checkVal(val, object)) {
throw new Error(`Invalid param ${String(fieldName)}=${val} (${typeof val}), expected ${type}`);
}
};
for (const [fieldName, type] of Object.entries(validators))
checkField(fieldName, type, false);
for (const [fieldName, type] of Object.entries(optValidators))
checkField(fieldName, type, true);
return object;
}
// node_modules/@noble/curves/esm/abstract/modular.js
var _0n2 = BigInt(0);
var _1n2 = BigInt(1);
var _2n2 = BigInt(2);
var _3n = BigInt(3);
var _4n = BigInt(4);
var _5n = BigInt(5);
var _8n = BigInt(8);
var _9n = BigInt(9);
var _16n = BigInt(16);
function mod(a, b) {
const result = a % b;
return result >= _0n2 ? result : b + result;
}
function pow(num, power, modulo) {
if (modulo <= _0n2 || power < _0n2)
throw new Error("Expected power/modulo > 0");
if (modulo === _1n2)
return _0n2;
let res = _1n2;
while (power > _0n2) {
if (power & _1n2)
res = res * num % modulo;
num = num * num % modulo;
power >>= _1n2;
}
return res;
}
function pow2(x, power, modulo) {
let res = x;
while (power-- > _0n2) {
res *= res;
res %= modulo;
}
return res;
}
function invert(number3, modulo) {
if (number3 === _0n2 || modulo <= _0n2) {
throw new Error(`invert: expected positive integers, got n=${number3} mod=${modulo}`);
}
let a = mod(number3, modulo);
let b = modulo;
let x = _0n2, y = _1n2, u = _1n2, v = _0n2;
while (a !== _0n2) {
const q = b / a;
const r = b % a;
const m = x - u * q;
const n = y - v * q;
b = a, a = r, x = u, y = v, u = m, v = n;
}
const gcd2 = b;
if (gcd2 !== _1n2)
throw new Error("invert: does not exist");
return mod(x, modulo);
}
function tonelliShanks(P) {
const legendreC = (P - _1n2) / _2n2;
let Q, S, Z;
for (Q = P - _1n2, S = 0; Q % _2n2 === _0n2; Q /= _2n2, S++)
;
for (Z = _2n2; Z < P && pow(Z, legendreC, P) !== P - _1n2; Z++)
;
if (S === 1) {
const p1div4 = (P + _1n2) / _4n;
return function tonelliFast(Fp2, n) {
const root = Fp2.pow(n, p1div4);
if (!Fp2.eql(Fp2.sqr(root), n))
throw new Error("Cannot find square root");
return root;
};
}
const Q1div2 = (Q + _1n2) / _2n2;
return function tonelliSlow(Fp2, n) {
if (Fp2.pow(n, legendreC) === Fp2.neg(Fp2.ONE))
throw new Error("Cannot find square root");
let r = S;
let g = Fp2.pow(Fp2.mul(Fp2.ONE, Z), Q);
let x = Fp2.pow(n, Q1div2);
let b = Fp2.pow(n, Q);
while (!Fp2.eql(b, Fp2.ONE)) {
if (Fp2.eql(b, Fp2.ZERO))
return Fp2.ZERO;
let m = 1;
for (let t2 = Fp2.sqr(b); m < r; m++) {
if (Fp2.eql(t2, Fp2.ONE))
break;
t2 = Fp2.sqr(t2);
}
const ge2 = Fp2.pow(g, _1n2 << BigInt(r - m - 1));
g = Fp2.sqr(ge2);
x = Fp2.mul(x, ge2);
b = Fp2.mul(b, g);
r = m;
}
return x;
};
}
function FpSqrt(P) {
if (P % _4n === _3n) {
const p1div4 = (P + _1n2) / _4n;
return function sqrt3mod4(Fp2, n) {
const root = Fp2.pow(n, p1div4);
if (!Fp2.eql(Fp2.sqr(root), n))
throw new Error("Cannot find square root");
return root;
};
}
if (P % _8n === _5n) {
const c1 = (P - _5n) / _8n;
return function sqrt5mod8(Fp2, n) {
const n2 = Fp2.mul(n, _2n2);
const v = Fp2.pow(n2, c1);
const nv = Fp2.mul(n, v);
const i2 = Fp2.mul(Fp2.mul(nv, _2n2), v);
const root = Fp2.mul(nv, Fp2.sub(i2, Fp2.ONE));
if (!Fp2.eql(Fp2.sqr(root), n))
throw new Error("Cannot find square root");
return root;
};
}
if (P % _16n === _9n) {
}
return tonelliShanks(P);
}
var FIELD_FIELDS = [
"create",
"isValid",
"is0",
"neg",
"inv",
"sqrt",
"sqr",
"eql",
"add",
"sub",
"mul",
"pow",
"div",
"addN",
"subN",
"mulN",
"sqrN"
];
function validateField(field) {
const initial = {
ORDER: "bigint",
MASK: "bigint",
BYTES: "isSafeInteger",
BITS: "isSafeInteger"
};
const opts = FIELD_FIELDS.reduce((map, val) => {
map[val] = "function";
return map;
}, initial);
return validateObject(field, opts);
}
function FpPow(f, num, power) {
if (power < _0n2)
throw new Error("Expected power > 0");
if (power === _0n2)
return f.ONE;
if (power === _1n2)
return num;
let p = f.ONE;
let d = num;
while (power > _0n2) {
if (power & _1n2)
p = f.mul(p, d);
d = f.sqr(d);
power >>= _1n2;
}
return p;
}
function FpInvertBatch(f, nums) {
const tmp = new Array(nums.length);
const lastMultiplied = nums.reduce((acc, num, i2) => {
if (f.is0(num))
return acc;
tmp[i2] = acc;
return f.mul(acc, num);
}, f.ONE);
const inverted = f.inv(lastMultiplied);
nums.reduceRight((acc, num, i2) => {
if (f.is0(num))
return acc;
tmp[i2] = f.mul(acc, tmp[i2]);
return f.mul(acc, num);
}, inverted);
return tmp;
}
function nLength(n, nBitLength) {
const _nBitLength = nBitLength !== void 0 ? nBitLength : n.toString(2).length;
const nByteLength = Math.ceil(_nBitLength / 8);
return { nBitLength: _nBitLength, nByteLength };
}
function Field(ORDER, bitLen2, isLE3 = false, redef = {}) {
if (ORDER <= _0n2)
throw new Error(`Expected Field ORDER > 0, got ${ORDER}`);
const { nBitLength: BITS, nByteLength: BYTES } = nLength(ORDER, bitLen2);
if (BYTES > 2048)
throw new Error("Field lengths over 2048 bytes are not supported");
const sqrtP = FpSqrt(ORDER);
const f = Object.freeze({
ORDER,
BITS,
BYTES,
MASK: bitMask(BITS),
ZERO: _0n2,
ONE: _1n2,
create: (num) => mod(num, ORDER),
isValid: (num) => {
if (typeof num !== "bigint")
throw new Error(`Invalid field element: expected bigint, got ${typeof num}`);
return _0n2 <= num && num < ORDER;
},
is0: (num) => num === _0n2,
isOdd: (num) => (num & _1n2) === _1n2,
neg: (num) => mod(-num, ORDER),
eql: (lhs, rhs) => lhs === rhs,
sqr: (num) => mod(num * num, ORDER),
add: (lhs, rhs) => mod(lhs + rhs, ORDER),
sub: (lhs, rhs) => mod(lhs - rhs, ORDER),
mul: (lhs, rhs) => mod(lhs * rhs, ORDER),
pow: (num, power) => FpPow(f, num, power),
div: (lhs, rhs) => mod(lhs * invert(rhs, ORDER), ORDER),
sqrN: (num) => num * num,
addN: (lhs, rhs) => lhs + rhs,
subN: (lhs, rhs) => lhs - rhs,
mulN: (lhs, rhs) => lhs * rhs,
inv: (num) => invert(num, ORDER),
sqrt: redef.sqrt || ((n) => sqrtP(f, n)),
invertBatch: (lst) => FpInvertBatch(f, lst),
cmov: (a, b, c) => c ? b : a,
toBytes: (num) => isLE3 ? numberToBytesLE(num, BYTES) : numberToBytesBE(num, BYTES),
fromBytes: (bytes3) => {
if (bytes3.length !== BYTES)
throw new Error(`Fp.fromBytes: expected ${BYTES}, got ${bytes3.length}`);
return isLE3 ? bytesToNumberLE(bytes3) : bytesToNumberBE(bytes3);
}
});
return Object.freeze(f);
}
function getFieldBytesLength(fieldOrder) {
if (typeof fieldOrder !== "bigint")
throw new Error("field order must be bigint");
const bitLength = fieldOrder.toString(2).length;
return Math.ceil(bitLength / 8);
}
function getMinHashLength(fieldOrder) {
const length = getFieldBytesLength(fieldOrder);
return length + Math.ceil(length / 2);
}
function mapHashToField(key, fieldOrder, isLE3 = false) {
const len = key.length;
const fieldLen = getFieldBytesLength(fieldOrder);
const minLen = getMinHashLength(fieldOrder);
if (len < 16 || len < minLen || len > 1024)
throw new Error(`expected ${minLen}-1024 bytes of input, got ${len}`);
const num = isLE3 ? bytesToNumberBE(key) : bytesToNumberLE(key);
const reduced = mod(num, fieldOrder - _1n2) + _1n2;
return isLE3 ? numberToBytesLE(reduced, fieldLen) : numberToBytesBE(reduced, fieldLen);
}
// node_modules/@noble/curves/esm/abstract/curve.js
var _0n3 = BigInt(0);
var _1n3 = BigInt(1);
function wNAF(c, bits) {
const constTimeNegate = (condition, item) => {
const neg = item.negate();
return condition ? neg : item;
};
const opts = (W) => {
const windows = Math.ceil(bits / W) + 1;
const windowSize = 2 ** (W - 1);
return { windows, windowSize };
};
return {
constTimeNegate,
unsafeLadder(elm, n) {
let p = c.ZERO;
let d = elm;
while (n > _0n3) {
if (n & _1n3)
p = p.add(d);
d = d.double();
n >>= _1n3;
}
return p;
},
precomputeWindow(elm, W) {
const { windows, windowSize } = opts(W);
const points = [];
let p = elm;
let base = p;
for (let window2 = 0; window2 < windows; window2++) {
base = p;
points.push(base);
for (let i2 = 1; i2 < windowSize; i2++) {
base = base.add(p);
points.push(base);
}
p = base.double();
}
return points;
},
wNAF(W, precomputes, n) {
const { windows, windowSize } = opts(W);
let p = c.ZERO;
let f = c.BASE;
const mask = BigInt(2 ** W - 1);
const maxNumber = 2 ** W;
const shiftBy = BigInt(W);
for (let window2 = 0; window2 < windows; window2++) {
const offset = window2 * windowSize;
let wbits = Number(n & mask);
n >>= shiftBy;
if (wbits > windowSize) {
wbits -= maxNumber;
n += _1n3;
}
const offset1 = offset;
const offset2 = offset + Math.abs(wbits) - 1;
const cond1 = window2 % 2 !== 0;
const cond2 = wbits < 0;
if (wbits === 0) {
f = f.add(constTimeNegate(cond1, precomputes[offset1]));
} else {
p = p.add(constTimeNegate(cond2, precomputes[offset2]));
}
}
return { p, f };
},
wNAFCached(P, precomputesMap, n, transform) {
const W = P._WINDOW_SIZE || 1;
let comp = precomputesMap.get(P);
if (!comp) {
comp = this.precomputeWindow(P, W);
if (W !== 1) {
precomputesMap.set(P, transform(comp));
}
}
return this.wNAF(W, comp, n);
}
};
}
function validateBasic(curve) {
validateField(curve.Fp);
validateObject(curve, {
n: "bigint",
h: "bigint",
Gx: "field",
Gy: "field"
}, {
nBitLength: "isSafeInteger",
nByteLength: "isSafeInteger"
});
return Object.freeze({
...nLength(curve.n, curve.nBitLength),
...curve,
...{ p: curve.Fp.ORDER }
});
}
// node_modules/@noble/curves/esm/abstract/weierstrass.js
function validatePointOpts(curve) {
const opts = validateBasic(curve);
validateObject(opts, {
a: "field",
b: "field"
}, {
allowedPrivateKeyLengths: "array",
wrapPrivateKey: "boolean",
isTorsionFree: "function",
clearCofactor: "function",
allowInfinityPoint: "boolean",
fromBytes: "function",
toBytes: "function"
});
const { endo, Fp: Fp2, a } = opts;
if (endo) {
if (!Fp2.eql(a, Fp2.ZERO)) {
throw new Error("Endomorphism can only be defined for Koblitz curves that have a=0");
}
if (typeof endo !== "object" || typeof endo.beta !== "bigint" || typeof endo.splitScalar !== "function") {
throw new Error("Expected endomorphism with beta: bigint and splitScalar: function");
}
}
return Object.freeze({ ...opts });
}
var { bytesToNumberBE: b2n, hexToBytes: h2b } = utils_exports;
var DER = {
Err: class DERErr extends Error {
constructor(m = "") {
super(m);
}
},
_parseInt(data) {
const { Err: E } = DER;
if (data.length < 2 || data[0] !== 2)
throw new E("Invalid signature integer tag");
const len = data[1];
const res = data.subarray(2, len + 2);
if (!len || res.length !== len)
throw new E("Invalid signature integer: wrong length");
if (res[0] & 128)
throw new E("Invalid signature integer: negative");
if (res[0] === 0 && !(res[1] & 128))
throw new E("Invalid signature integer: unnecessary leading zero");
return { d: b2n(res), l: data.subarray(len + 2) };
},
toSig(hex2) {
const { Err: E } = DER;
const data = typeof hex2 === "string" ? h2b(hex2) : hex2;
if (!(data instanceof Uint8Array))
throw new Error("ui8a expected");
let l = data.length;
if (l < 2 || data[0] != 48)
throw new E("Invalid signature tag");
if (data[1] !== l - 2)
throw new E("Invalid signature: incorrect length");
const { d: r, l: sBytes } = DER._parseInt(data.subarray(2));
const { d: s, l: rBytesLeft } = DER._parseInt(sBytes);
if (rBytesLeft.length)
throw new E("Invalid signature: left bytes after parsing");
return { r, s };
},
hexFromSig(sig) {
const slice = (s2) => Number.parseInt(s2[0], 16) & 8 ? "00" + s2 : s2;
const h = (num) => {
const hex2 = num.toString(16);
return hex2.length & 1 ? `0${hex2}` : hex2;
};
const s = slice(h(sig.s));
const r = slice(h(sig.r));
const shl = s.length / 2;
const rhl = r.length / 2;
const sl = h(shl);
const rl = h(rhl);
return `30${h(rhl + shl + 4)}02${rl}${r}02${sl}${s}`;
}
};
var _0n4 = BigInt(0);
var _1n4 = BigInt(1);
var _2n3 = BigInt(2);
var _3n2 = BigInt(3);
var _4n2 = BigInt(4);
function weierstrassPoints(opts) {
const CURVE = validatePointOpts(opts);
const { Fp: Fp2 } = CURVE;
const toBytes3 = CURVE.toBytes || ((_c, point, _isCompressed) => {
const a = point.toAffine();
return concatBytes3(Uint8Array.from([4]), Fp2.toBytes(a.x), Fp2.toBytes(a.y));
});
const fromBytes = CURVE.fromBytes || ((bytes3) => {
const tail = bytes3.subarray(1);
const x = Fp2.fromBytes(tail.subarray(0, Fp2.BYTES));
const y = Fp2.fromBytes(tail.subarray(Fp2.BYTES, 2 * Fp2.BYTES));
return { x, y };
});
function weierstrassEquation(x) {
const { a, b } = CURVE;
const x2 = Fp2.sqr(x);
const x3 = Fp2.mul(x2, x);
return Fp2.add(Fp2.add(x3, Fp2.mul(x, a)), b);
}
if (!Fp2.eql(Fp2.sqr(CURVE.Gy), weierstrassEquation(CURVE.Gx)))
throw new Error("bad generator point: equation left != right");
function isWithinCurveOrder(num) {
return typeof num === "bigint" && _0n4 < num && num < CURVE.n;
}
function assertGE(num) {
if (!isWithinCurveOrder(num))
throw new Error("Expected valid bigint: 0 < bigint < curve.n");
}
function normPrivateKeyToScalar(key) {
const { allowedPrivateKeyLengths: lengths, nByteLength, wrapPrivateKey, n } = CURVE;
if (lengths && typeof key !== "bigint") {
if (key instanceof Uint8Array)
key = bytesToHex2(key);
if (typeof key !== "string" || !lengths.includes(key.length))
throw new Error("Invalid key");
key = key.padStart(nByteLength * 2, "0");
}
let num;
try {
num = typeof key === "bigint" ? key : bytesToNumberBE(ensureBytes("private key", key, nByteLength));
} catch (error) {
throw new Error(`private key must be ${nByteLength} bytes, hex or bigint, not ${typeof key}`);
}
if (wrapPrivateKey)
num = mod(num, n);
assertGE(num);
return num;
}
const pointPrecomputes = /* @__PURE__ */ new Map();
function assertPrjPoint(other) {
if (!(other instanceof Point2))
throw new Error("ProjectivePoint expected");
}
class Point2 {
constructor(px, py, pz) {
this.px = px;
this.py = py;
this.pz = pz;
if (px == null || !Fp2.isValid(px))
throw new Error("x required");
if (py == null || !Fp2.isValid(py))
throw new Error("y required");
if (pz == null || !Fp2.isValid(pz))
throw new Error("z required");
}
static fromAffine(p) {
const { x, y } = p || {};
if (!p || !Fp2.isValid(x) || !Fp2.isValid(y))
throw new Error("invalid affine point");
if (p instanceof Point2)
throw new Error("projective point not allowed");
const is0 = (i2) => Fp2.eql(i2, Fp2.ZERO);
if (is0(x) && is0(y))
return Point2.ZERO;
return new Point2(x, y, Fp2.ONE);
}
get x() {
return this.toAffine().x;
}
get y() {
return this.toAffine().y;
}
static normalizeZ(points) {
const toInv = Fp2.invertBatch(points.map((p) => p.pz));
return points.map((p, i2) => p.toAffine(toInv[i2])).map(Point2.fromAffine);
}
static fromHex(hex2) {
const P = Point2.fromAffine(fromBytes(ensureBytes("pointHex", hex2)));
P.assertValidity();
return P;
}
static fromPrivateKey(privateKey) {
return Point2.BASE.multiply(normPrivateKeyToScalar(privateKey));
}
_setWindowSize(windowSize) {
this._WINDOW_SIZE = windowSize;
pointPrecomputes.delete(this);
}
assertValidity() {
if (this.is0()) {
if (CURVE.allowInfinityPoint && !Fp2.is0(this.py))
return;
throw new Error("bad point: ZERO");
}
const { x, y } = this.toAffine();
if (!Fp2.isValid(x) || !Fp2.isValid(y))
throw new Error("bad point: x or y not FE");
const left = Fp2.sqr(y);
const right = weierstrassEquation(x);
if (!Fp2.eql(left, right))
throw new Error("bad point: equation left != right");
if (!this.isTorsionFree())
throw new Error("bad point: not in prime-order subgroup");
}
hasEvenY() {
const { y } = this.toAffine();
if (Fp2.isOdd)
return !Fp2.isOdd(y);
throw new Error("Field doesn't support isOdd");
}
equals(other) {
assertPrjPoint(other);
const { px: X1, py: Y1, pz: Z1 } = this;
const { px: X2, py: Y2, pz: Z2 } = other;
const U1 = Fp2.eql(Fp2.mul(X1, Z2), Fp2.mul(X2, Z1));
const U2 = Fp2.eql(Fp2.mul(Y1, Z2), Fp2.mul(Y2, Z1));
return U1 && U2;
}
negate() {
return new Point2(this.px, Fp2.neg(this.py), this.pz);
}
double() {
const { a, b } = CURVE;
const b3 = Fp2.mul(b, _3n2);
const { px: X1, py: Y1, pz: Z1 } = this;
let X3 = Fp2.ZERO, Y3 = Fp2.ZERO, Z3 = Fp2.ZERO;
let t0 = Fp2.mul(X1, X1);
let t1 = Fp2.mul(Y1, Y1);
let t2 = Fp2.mul(Z1, Z1);
let t3 = Fp2.mul(X1, Y1);
t3 = Fp2.add(t3, t3);
Z3 = Fp2.mul(X1, Z1);
Z3 = Fp2.add(Z3, Z3);
X3 = Fp2.mul(a, Z3);
Y3 = Fp2.mul(b3, t2);
Y3 = Fp2.add(X3, Y3);
X3 = Fp2.sub(t1, Y3);
Y3 = Fp2.add(t1, Y3);
Y3 = Fp2.mul(X3, Y3);
X3 = Fp2.mul(t3, X3);
Z3 = Fp2.mul(b3, Z3);
t2 = Fp2.mul(a, t2);
t3 = Fp2.sub(t0, t2);
t3 = Fp2.mul(a, t3);
t3 = Fp2.add(t3, Z3);
Z3 = Fp2.add(t0, t0);
t0 = Fp2.add(Z3, t0);
t0 = Fp2.add(t0, t2);
t0 = Fp2.mul(t0, t3);
Y3 = Fp2.add(Y3, t0);
t2 = Fp2.mul(Y1, Z1);
t2 = Fp2.add(t2, t2);
t0 = Fp2.mul(t2, t3);
X3 = Fp2.sub(X3, t0);
Z3 = Fp2.mul(t2, t1);
Z3 = Fp2.add(Z3, Z3);
Z3 = Fp2.add(Z3, Z3);
return new Point2(X3, Y3, Z3);
}
add(other) {
assertPrjPoint(other);
const { px: X1, py: Y1, pz: Z1 } = this;
const { px: X2, py: Y2, pz: Z2 } = other;
let X3 = Fp2.ZERO, Y3 = Fp2.ZERO, Z3 = Fp2.ZERO;
const a = CURVE.a;
const b3 = Fp2.mul(CURVE.b, _3n2);
let t0 = Fp2.mul(X1, X2);
let t1 = Fp2.mul(Y1, Y2);
let t2 = Fp2.mul(Z1, Z2);
let t3 = Fp2.add(X1, Y1);
let t4 = Fp2.add(X2, Y2);
t3 = Fp2.mul(t3, t4);
t4 = Fp2.add(t0, t1);
t3 = Fp2.sub(t3, t4);
t4 = Fp2.add(X1, Z1);
let t5 = Fp2.add(X2, Z2);
t4 = Fp2.mul(t4, t5);
t5 = Fp2.add(t0, t2);
t4 = Fp2.sub(t4, t5);
t5 = Fp2.add(Y1, Z1);
X3 = Fp2.add(Y2, Z2);
t5 = Fp2.mul(t5, X3);
X3 = Fp2.add(t1, t2);
t5 = Fp2.sub(t5, X3);
Z3 = Fp2.mul(a, t4);
X3 = Fp2.mul(b3, t2);
Z3 = Fp2.add(X3, Z3);
X3 = Fp2.sub(t1, Z3);
Z3 = Fp2.add(t1, Z3);
Y3 = Fp2.mul(X3, Z3);
t1 = Fp2.add(t0, t0);
t1 = Fp2.add(t1, t0);
t2 = Fp2.mul(a, t2);
t4 = Fp2.mul(b3, t4);
t1 = Fp2.add(t1, t2);
t2 = Fp2.sub(t0, t2);
t2 = Fp2.mul(a, t2);
t4 = Fp2.add(t4, t2);
t0 = Fp2.mul(t1, t4);
Y3 = Fp2.add(Y3, t0);
t0 = Fp2.mul(t5, t4);
X3 = Fp2.mul(t3, X3);
X3 = Fp2.sub(X3, t0);
t0 = Fp2.mul(t3, t1);
Z3 = Fp2.mul(t5, Z3);
Z3 = Fp2.add(Z3, t0);
return new Point2(X3, Y3, Z3);
}
subtract(other) {
return this.add(other.negate());
}
is0() {
return this.equals(Point2.ZERO);
}
wNAF(n) {
return wnaf.wNAFCached(this, pointPrecomputes, n, (comp) => {
const toInv = Fp2.invertBatch(comp.map((p) => p.pz));
return comp.map((p, i2) => p.toAffine(toInv[i2])).map(Point2.fromAffine);
});
}
multiplyUnsafe(n) {
const I = Point2.ZERO;
if (n === _0n4)
return I;
assertGE(n);
if (n === _1n4)
return this;
const { endo } = CURVE;
if (!endo)
return wnaf.unsafeLadder(this, n);
let { k1neg, k1, k2neg, k2 } = endo.splitScalar(n);
let k1p = I;
let k2p = I;
let d = this;
while (k1 > _0n4 || k2 > _0n4) {
if (k1 & _1n4)
k1p = k1p.add(d);
if (k2 & _1n4)
k2p = k2p.add(d);
d = d.double();
k1 >>= _1n4;
k2 >>= _1n4;
}
if (k1neg)
k1p = k1p.negate();
if (k2neg)
k2p = k2p.negate();
k2p = new Point2(Fp2.mul(k2p.px, endo.beta), k2p.py, k2p.pz);
return k1p.add(k2p);
}
multiply(scalar) {
assertGE(scalar);
let n = scalar;
let point, fake;
const { endo } = CURVE;
if (endo) {
const { k1neg, k1, k2neg, k2 } = endo.splitScalar(n);
let { p: k1p, f: f1p } = this.wNAF(k1);
let { p: k2p, f: f2p } = this.wNAF(k2);
k1p = wnaf.constTimeNegate(k1neg, k1p);
k2p = wnaf.constTimeNegate(k2neg, k2p);
k2p = new Point2(Fp2.mul(k2p.px, endo.beta), k2p.py, k2p.pz);
point = k1p.add(k2p);
fake = f1p.add(f2p);
} else {
const { p, f } = this.wNAF(n);
point = p;
fake = f;
}
return Point2.normalizeZ([point, fake])[0];
}
multiplyAndAddUnsafe(Q, a, b) {
const G = Point2.BASE;
const mul = (P, a2) => a2 === _0n4 || a2 === _1n4 || !P.equals(G) ? P.multiplyUnsafe(a2) : P.multiply(a2);
const sum = mul(this, a).add(mul(Q, b));
return sum.is0() ? void 0 : sum;
}
toAffine(iz) {
const { px: x, py: y, pz: z } = this;
const is0 = this.is0();
if (iz == null)
iz = is0 ? Fp2.ONE : Fp2.inv(z);
const ax = Fp2.mul(x, iz);
const ay = Fp2.mul(y, iz);
const zz = Fp2.mul(z, iz);
if (is0)
return { x: Fp2.ZERO, y: Fp2.ZERO };
if (!Fp2.eql(zz, Fp2.ONE))
throw new Error("invZ was invalid");
return { x: ax, y: ay };
}
isTorsionFree() {
const { h: cofactor, isTorsionFree } = CURVE;
if (cofactor === _1n4)
return true;
if (isTorsionFree)
return isTorsionFree(Point2, this);
throw new Error("isTorsionFree() has not been declared for the elliptic curve");
}
clearCofactor() {
const { h: cofactor, clearCofactor } = CURVE;
if (cofactor === _1n4)
return this;
if (clearCofactor)
return clearCofactor(Point2, this);
return this.multiplyUnsafe(CURVE.h);
}
toRawBytes(isCompressed = true) {
this.assertValidity();
return toBytes3(Point2, this, isCompressed);
}
toHex(isCompressed = true) {
return bytesToHex2(this.toRawBytes(isCompressed));
}
}
Point2.BASE = new Point2(CURVE.Gx, CURVE.Gy, Fp2.ONE);
Point2.ZERO = new Point2(Fp2.ZERO, Fp2.ONE, Fp2.ZERO);
const _bits = CURVE.nBitLength;
const wnaf = wNAF(Point2, CURVE.endo ? Math.ceil(_bits / 2) : _bits);
return {
CURVE,
ProjectivePoint: Point2,
normPrivateKeyToScalar,
weierstrassEquation,
isWithinCurveOrder
};
}
function validateOpts(curve) {
const opts = validateBasic(curve);
validateObject(opts, {
hash: "hash",
hmac: "function",
randomBytes: "function"
}, {
bits2int: "function",
bits2int_modN: "function",
lowS: "boolean"
});
return Object.freeze({ lowS: true, ...opts });
}
function weierstrass(curveDef) {
const CURVE = validateOpts(curveDef);
const { Fp: Fp2, n: CURVE_ORDER } = CURVE;
const compressedLen = Fp2.BYTES + 1;
const uncompressedLen = 2 * Fp2.BYTES + 1;
function isValidFieldElement(num) {
return _0n4 < num && num < Fp2.ORDER;
}
function modN2(a) {
return mod(a, CURVE_ORDER);
}
function invN(a) {
return invert(a, CURVE_ORDER);
}
const { ProjectivePoint: Point2, normPrivateKeyToScalar, weierstrassEquation, isWithinCurveOrder } = weierstrassPoints({
...CURVE,
toBytes(_c, point, isCompressed) {
const a = point.toAffine();
const x = Fp2.toBytes(a.x);
const cat = concatBytes3;
if (isCompressed) {
return cat(Uint8Array.from([point.hasEvenY() ? 2 : 3]), x);
} else {
return cat(Uint8Array.from([4]), x, Fp2.toBytes(a.y));
}
},
fromBytes(bytes3) {
const len = bytes3.length;
const head = bytes3[0];
const tail = bytes3.subarray(1);
if (len === compressedLen && (head === 2 || head === 3)) {
const x = bytesToNumberBE(tail);
if (!isValidFieldElement(x))
throw new Error("Point is not on curve");
const y2 = weierstrassEquation(x);
let y = Fp2.sqrt(y2);
const isYOdd = (y & _1n4) === _1n4;
const isHeadOdd = (head & 1) === 1;
if (isHeadOdd !== isYOdd)
y = Fp2.neg(y);
return { x, y };
} else if (len === uncompressedLen && head === 4) {
const x = Fp2.fromBytes(tail.subarray(0, Fp2.BYTES));
const y = Fp2.fromBytes(tail.subarray(Fp2.BYTES, 2 * Fp2.BYTES));
return { x, y };
} else {
throw new Error(`Point of length ${len} was invalid. Expected ${compressedLen} compressed bytes or ${uncompressedLen} uncompressed bytes`);
}
}
});
const numToNByteStr = (num) => bytesToHex2(numberToBytesBE(num, CURVE.nByteLength));
function isBiggerThanHalfOrder(number3) {
const HALF = CURVE_ORDER >> _1n4;
return number3 > HALF;
}
function normalizeS(s) {
return isBiggerThanHalfOrder(s) ? modN2(-s) : s;
}
const slcNum = (b, from, to) => bytesToNumberBE(b.slice(from, to));
class Signature {
constructor(r, s, recovery) {
this.r = r;
this.s = s;
this.recovery = recovery;
this.assertValidity();
}
static fromCompact(hex2) {
const l = CURVE.nByteLength;
hex2 = ensureBytes("compactSignature", hex2, l * 2);
return new Signature(slcNum(hex2, 0, l), slcNum(hex2, l, 2 * l));
}
static fromDER(hex2) {
const { r, s } = DER.toSig(ensureBytes("DER", hex2));
return new Signature(r, s);
}
assertValidity() {
if (!isWithinCurveOrder(this.r))
throw new Error("r must be 0 < r < CURVE.n");
if (!isWithinCurveOrder(this.s))
throw new Error("s must be 0 < s < CURVE.n");
}
addRecoveryBit(recovery) {
return new Signature(this.r, this.s, recovery);
}
recoverPublicKey(msgHash) {
const { r, s, recovery: rec } = this;
const h = bits2int_modN(ensureBytes("msgHash", msgHash));
if (rec == null || ![0, 1, 2, 3].includes(rec))
throw new Error("recovery id invalid");
const radj = rec === 2 || rec === 3 ? r + CURVE.n : r;
if (radj >= Fp2.ORDER)
throw new Error("recovery id 2 or 3 invalid");
const prefix = (rec & 1) === 0 ? "02" : "03";
const R = Point2.fromHex(prefix + numToNByteStr(radj));
const ir = invN(radj);
const u1 = modN2(-h * ir);
const u2 = modN2(s * ir);
const Q = Point2.BASE.multiplyAndAddUnsafe(R, u1, u2);
if (!Q)
throw new Error("point at infinify");
Q.assertValidity();
return Q;
}
hasHighS() {
return isBiggerThanHalfOrder(this.s);
}
normalizeS() {
return this.hasHighS() ? new Signature(this.r, modN2(-this.s), this.recovery) : this;
}
toDERRawBytes() {
return hexToBytes2(this.toDERHex());
}
toDERHex() {
return DER.hexFromSig({ r: this.r, s: this.s });
}
toCompactRawBytes() {
return hexToBytes2(this.toCompactHex());
}
toCompactHex() {
return numToNByteStr(this.r) + numToNByteStr(this.s);
}
}
const utils = {
isValidPrivateKey(privateKey) {
try {
normPrivateKeyToScalar(privateKey);
return true;
} catch (error) {
return false;
}
},
normPrivateKeyToScalar,
randomPrivateKey: () => {
const length = getMinHashLength(CURVE.n);
return mapHashToField(CURVE.randomBytes(length), CURVE.n);
},
precompute(windowSize = 8, point = Point2.BASE) {
point._setWindowSize(windowSize);
point.multiply(BigInt(3));
return point;
}
};
function getPublicKey2(privateKey, isCompressed = true) {
return Point2.fromPrivateKey(privateKey).toRawBytes(isCompressed);
}
function isProbPub(item) {
const arr = item instanceof Uint8Array;
const str = typeof item === "string";
const len = (arr || str) && item.length;
if (arr)
return len === compressedLen || len === uncompressedLen;
if (str)
return len === 2 * compressedLen || len === 2 * uncompressedLen;
if (item instanceof Point2)
return true;
return false;
}
function getSharedSecret(privateA, publicB, isCompressed = true) {
if (isProbPub(privateA))
throw new Error("first arg must be private key");
if (!isProbPub(publicB))
throw new Error("second arg must be public key");
const b = Point2.fromHex(publicB);
return b.multiply(normPrivateKeyToScalar(privateA)).toRawBytes(isCompressed);
}
const bits2int = CURVE.bits2int || function(bytes3) {
const num = bytesToNumberBE(bytes3);
const delta = bytes3.length * 8 - CURVE.nBitLength;
return delta > 0 ? num >> BigInt(delta) : num;
};
const bits2int_modN = CURVE.bits2int_modN || function(bytes3) {
return modN2(bits2int(bytes3));
};
const ORDER_MASK = bitMask(CURVE.nBitLength);
function int2octets(num) {
if (typeof num !== "bigint")
throw new Error("bigint expected");
if (!(_0n4 <= num && num < ORDER_MASK))
throw new Error(`bigint expected < 2^${CURVE.nBitLength}`);
return numberToBytesBE(num, CURVE.nByteLength);
}
function prepSig(msgHash, privateKey, opts = defaultSigOpts) {
if (["recovered", "canonical"].some((k) => k in opts))
throw new Error("sign() legacy options not supported");
const { hash: hash3, randomBytes: randomBytes2 } = CURVE;
let { lowS, prehash, extraEntropy: ent } = opts;
if (lowS == null)
lowS = true;
msgHash = ensureBytes("msgHash", msgHash);
if (prehash)
msgHash = ensureBytes("prehashed msgHash", hash3(msgHash));
const h1int = bits2int_modN(msgHash);
const d = normPrivateKeyToScalar(privateKey);
const seedArgs = [int2octets(d), int2octets(h1int)];
if (ent != null) {
const e = ent === true ? randomBytes2(Fp2.BYTES) : ent;
seedArgs.push(ensureBytes("extraEntropy", e));
}
const seed = concatBytes3(...seedArgs);
const m = h1int;
function k2sig(kBytes) {
const k = bits2int(kBytes);
if (!isWithinCurveOrder(k))
return;
const ik = invN(k);
const q = Point2.BASE.multiply(k).toAffine();
const r = modN2(q.x);
if (r === _0n4)
return;
const s = modN2(ik * modN2(m + r * d));
if (s === _0n4)
return;
let recovery = (q.x === r ? 0 : 2) | Number(q.y & _1n4);
let normS = s;
if (lowS && isBiggerThanHalfOrder(s)) {
normS = normalizeS(s);
recovery ^= 1;
}
return new Signature(r, normS, recovery);
}
return { seed, k2sig };
}
const defaultSigOpts = { lowS: CURVE.lowS, prehash: false };
const defaultVerOpts = { lowS: CURVE.lowS, prehash: false };
function sign(msgHash, privKey, opts = defaultSigOpts) {
const { seed, k2sig } = prepSig(msgHash, privKey, opts);
const C = CURVE;
const drbg = createHmacDrbg(C.hash.outputLen, C.nByteLength, C.hmac);
return drbg(seed, k2sig);
}
Point2.BASE._setWindowSize(8);
function verify(signature, msgHash, publicKey, opts = defaultVerOpts) {
const sg = signature;
msgHash = ensureBytes("msgHash", msgHash);
publicKey = ensureBytes("publicKey", publicKey);
if ("strict" in opts)
throw new Error("options.strict was renamed to lowS");
const { lowS, prehash } = opts;
let _sig = void 0;
let P;
try {
if (typeof sg === "string" || sg instanceof Uint8Array) {
try {
_sig = Signature.fromDER(sg);
} catch (derError) {
if (!(derError instanceof DER.Err))
throw derError;
_sig = Signature.fromCompact(sg);
}
} else if (typeof sg === "object" && typeof sg.r === "bigint" && typeof sg.s === "bigint") {
const { r: r2, s: s2 } = sg;
_sig = new Signature(r2, s2);
} else {
throw new Error("PARSE");
}
P = Point2.fromHex(publicKey);
} catch (error) {
if (error.message === "PARSE")
throw new Error(`signature must be Signature instance, Uint8Array or hex string`);
return false;
}
if (lowS && _sig.hasHighS())
return false;
if (prehash)
msgHash = CURVE.hash(msgHash);
const { r, s } = _sig;
const h = bits2int_modN(msgHash);
const is = invN(s);
const u1 = modN2(h * is);
const u2 = modN2(r * is);
const R = Point2.BASE.multiplyAndAddUnsafe(P, u1, u2)?.toAffine();
if (!R)
return false;
const v = modN2(R.x);
return v === r;
}
return {
CURVE,
getPublicKey: getPublicKey2,
getSharedSecret,
sign,
verify,
ProjectivePoint: Point2,
Signature,
utils
};
}
// node_modules/@noble/curves/node_modules/@noble/hashes/esm/hmac.js
var HMAC = class extends Hash2 {
constructor(hash3, _key) {
super();
this.finished = false;
this.destroyed = false;
hash(hash3);
const key = toBytes2(_key);
this.iHash = hash3.create();
if (typeof this.iHash.update !== "function")
throw new Error("Expected instance of class which extends utils.Hash");
this.blockLen = this.iHash.blockLen;
this.outputLen = this.iHash.outputLen;
const blockLen = this.blockLen;
const pad = new Uint8Array(blockLen);
pad.set(key.length > blockLen ? hash3.create().update(key).digest() : key);
for (let i2 = 0; i2 < pad.length; i2++)
pad[i2] ^= 54;
this.iHash.update(pad);
this.oHash = hash3.create();
for (let i2 = 0; i2 < pad.length; i2++)
pad[i2] ^= 54 ^ 92;
this.oHash.update(pad);
pad.fill(0);
}
update(buf) {
exists(this);
this.iHash.update(buf);
return this;
}
digestInto(out) {
exists(this);
bytes(out, this.outputLen);
this.finished = true;
this.iHash.digestInto(out);
this.oHash.update(out);
this.oHash.digestInto(out);
this.destroy();
}
digest() {
const out = new Uint8Array(this.oHash.outputLen);
this.digestInto(out);
return out;
}
_cloneInto(to) {
to || (to = Object.create(Object.getPrototypeOf(this), {}));
const { oHash, iHash, finished, destroyed, blockLen, outputLen } = this;
to = to;
to.finished = finished;
to.destroyed = destroyed;
to.blockLen = blockLen;
to.outputLen = outputLen;
to.oHash = oHash._cloneInto(to.oHash);
to.iHash = iHash._cloneInto(to.iHash);
return to;
}
destroy() {
this.destroyed = true;
this.oHash.destroy();
this.iHash.destroy();
}
};
var hmac = (hash3, key, message) => new HMAC(hash3, key).update(message).digest();
hmac.create = (hash3, key) => new HMAC(hash3, key);
// node_modules/@noble/curves/esm/_shortw_utils.js
function getHash(hash3) {
return {
hash: hash3,
hmac: (key, ...msgs) => hmac(hash3, key, concatBytes2(...msgs)),
randomBytes
};
}
function createCurve(curveDef, defHash) {
const create = (hash3) => weierstrass({ ...curveDef, ...getHash(hash3) });
return Object.freeze({ ...create(defHash), create });
}
// node_modules/@noble/curves/esm/secp256k1.js
var secp256k1P = BigInt("0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f");
var secp256k1N = BigInt("0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141");
var _1n5 = BigInt(1);
var _2n4 = BigInt(2);
var divNearest = (a, b) => (a + b / _2n4) / b;
function sqrtMod(y) {
const P = secp256k1P;
const _3n3 = BigInt(3), _6n = BigInt(6), _11n = BigInt(11), _22n = BigInt(22);
const _23n = BigInt(23), _44n = BigInt(44), _88n = BigInt(88);
const b2 = y * y * y % P;
const b3 = b2 * b2 * y % P;
const b6 = pow2(b3, _3n3, P) * b3 % P;
const b9 = pow2(b6, _3n3, P) * b3 % P;
const b11 = pow2(b9, _2n4, P) * b2 % P;
const b22 = pow2(b11, _11n, P) * b11 % P;
const b44 = pow2(b22, _22n, P) * b22 % P;
const b88 = pow2(b44, _44n, P) * b44 % P;
const b176 = pow2(b88, _88n, P) * b88 % P;
const b220 = pow2(b176, _44n, P) * b44 % P;
const b223 = pow2(b220, _3n3, P) * b3 % P;
const t1 = pow2(b223, _23n, P) * b22 % P;
const t2 = pow2(t1, _6n, P) * b2 % P;
const root = pow2(t2, _2n4, P);
if (!Fp.eql(Fp.sqr(root), y))
throw new Error("Cannot find square root");
return root;
}
var Fp = Field(secp256k1P, void 0, void 0, { sqrt: sqrtMod });
var secp256k1 = createCurve({
a: BigInt(0),
b: BigInt(7),
Fp,
n: secp256k1N,
Gx: BigInt("55066263022277343669578718895168534326250603453777594175500187360389116729240"),
Gy: BigInt("32670510020758816978083085130507043184471273380659243275938904335757337482424"),
h: BigInt(1),
lowS: true,
endo: {
beta: BigInt("0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee"),
splitScalar: (k) => {
const n = secp256k1N;
const a1 = BigInt("0x3086d221a7d46bcde86c90e49284eb15");
const b1 = -_1n5 * BigInt("0xe4437ed6010e88286f547fa90abfe4c3");
const a2 = BigInt("0x114ca50f7a8e2f3f657c1108d9d44cfd8");
const b2 = a1;
const POW_2_128 = BigInt("0x100000000000000000000000000000000");
const c1 = divNearest(b2 * k, n);
const c2 = divNearest(-b1 * k, n);
let k1 = mod(k - c1 * a1 - c2 * a2, n);
let k2 = mod(-c1 * b1 - c2 * b2, n);
const k1neg = k1 > POW_2_128;
const k2neg = k2 > POW_2_128;
if (k1neg)
k1 = n - k1;
if (k2neg)
k2 = n - k2;
if (k1 > POW_2_128 || k2 > POW_2_128) {
throw new Error("splitScalar: Endomorphism failed, k=" + k);
}
return { k1neg, k1, k2neg, k2 };
}
}
}, sha256);
var _0n5 = BigInt(0);
var fe = (x) => typeof x === "bigint" && _0n5 < x && x < secp256k1P;
var ge = (x) => typeof x === "bigint" && _0n5 < x && x < secp256k1N;
var TAGGED_HASH_PREFIXES = {};
function taggedHash(tag, ...messages) {
let tagP = TAGGED_HASH_PREFIXES[tag];
if (tagP === void 0) {
const tagH = sha256(Uint8Array.from(tag, (c) => c.charCodeAt(0)));
tagP = concatBytes3(tagH, tagH);
TAGGED_HASH_PREFIXES[tag] = tagP;
}
return sha256(concatBytes3(tagP, ...messages));
}
var pointToBytes = (point) => point.toRawBytes(true).slice(1);
var numTo32b = (n) => numberToBytesBE(n, 32);
var modP = (x) => mod(x, secp256k1P);
var modN = (x) => mod(x, secp256k1N);
var Point = secp256k1.ProjectivePoint;
var GmulAdd = (Q, a, b) => Point.BASE.multiplyAndAddUnsafe(Q, a, b);
function schnorrGetExtPubKey(priv) {
let d_ = secp256k1.utils.normPrivateKeyToScalar(priv);
let p = Point.fromPrivateKey(d_);
const scalar = p.hasEvenY() ? d_ : modN(-d_);
return { scalar, bytes: pointToBytes(p) };
}
function lift_x(x) {
if (!fe(x))
throw new Error("bad x: need 0 < x < p");
const xx = modP(x * x);
const c = modP(xx * x + BigInt(7));
let y = sqrtMod(c);
if (y % _2n4 !== _0n5)
y = modP(-y);
const p = new Point(x, y, _1n5);
p.assertValidity();
return p;
}
function challenge(...args) {
return modN(bytesToNumberBE(taggedHash("BIP0340/challenge", ...args)));
}
function schnorrGetPublicKey(privateKey) {
return schnorrGetExtPubKey(privateKey).bytes;
}
function schnorrSign(message, privateKey, auxRand = randomBytes(32)) {
const m = ensureBytes("message", message);
const { bytes: px, scalar: d } = schnorrGetExtPubKey(privateKey);
const a = ensureBytes("auxRand", auxRand, 32);
const t = numTo32b(d ^ bytesToNumberBE(taggedHash("BIP0340/aux", a)));
const rand = taggedHash("BIP0340/nonce", t, px, m);
const k_ = modN(bytesToNumberBE(rand));
if (k_ === _0n5)
throw new Error("sign failed: k is zero");
const { bytes: rx, scalar: k } = schnorrGetExtPubKey(k_);
const e = challenge(rx, px, m);
const sig = new Uint8Array(64);
sig.set(rx, 0);
sig.set(numTo32b(modN(k + e * d)), 32);
if (!schnorrVerify(sig, m, px))
throw new Error("sign: Invalid signature produced");
return sig;
}
function schnorrVerify(signature, message, publicKey) {
const sig = ensureBytes("signature", signature, 64);
const m = ensureBytes("message", message);
const pub = ensureBytes("publicKey", publicKey, 32);
try {
const P = lift_x(bytesToNumberBE(pub));
const r = bytesToNumberBE(sig.subarray(0, 32));
if (!fe(r))
return false;
const s = bytesToNumberBE(sig.subarray(32, 64));
if (!ge(s))
return false;
const e = challenge(numTo32b(r), pointToBytes(P), m);
const R = GmulAdd(P, s, modN(-e));
if (!R || !R.hasEvenY() || R.toAffine().x !== r)
return false;
return true;
} catch (error) {
return false;
}
}
var schnorr = /* @__PURE__ */ (() => ({
getPublicKey: schnorrGetPublicKey,
sign: schnorrSign,
verify: schnorrVerify,
utils: {
randomPrivateKey: secp256k1.utils.randomPrivateKey,
lift_x,
pointToBytes,
numberToBytesBE,
bytesToNumberBE,
taggedHash,
mod
}
}))();
// node_modules/@noble/hashes/esm/_assert.js
function number2(n) {
if (!Number.isSafeInteger(n) || n < 0)
throw new Error(`Wrong positive integer: ${n}`);
}
function bool(b) {
if (typeof b !== "boolean")
throw new Error(`Expected boolean, not ${b}`);
}
function bytes2(b, ...lengths) {
if (!(b instanceof Uint8Array))
throw new Error("Expected Uint8Array");
if (lengths.length > 0 && !lengths.includes(b.length))
throw new Error(`Expected Uint8Array of length ${lengths}, not of length=${b.length}`);
}
function hash2(hash3) {
if (typeof hash3 !== "function" || typeof hash3.create !== "function")
throw new Error("Hash should be wrapped by utils.wrapConstructor");
number2(hash3.outputLen);
number2(hash3.blockLen);
}
function exists2(instance, checkFinished = true) {
if (instance.destroyed)
throw new Error("Hash instance has been destroyed");
if (checkFinished && instance.finished)
throw new Error("Hash#digest() has already been called");
}
function output2(out, instance) {
bytes2(out);
const min = instance.outputLen;
if (out.length < min) {
throw new Error(`digestInto() expects output buffer of length at least ${min}`);
}
}
var assert = {
number: number2,
bool,
bytes: bytes2,
hash: hash2,
exists: exists2,
output: output2
};
var assert_default = assert;
// node_modules/@noble/hashes/esm/_sha2.js
function setBigUint642(view, byteOffset, value, isLE3) {
if (typeof view.setBigUint64 === "function")
return view.setBigUint64(byteOffset, value, isLE3);
const _32n = BigInt(32);
const _u32_max = BigInt(4294967295);
const wh = Number(value >> _32n & _u32_max);
const wl = Number(value & _u32_max);
const h = isLE3 ? 4 : 0;
const l = isLE3 ? 0 : 4;
view.setUint32(byteOffset + h, wh, isLE3);
view.setUint32(byteOffset + l, wl, isLE3);
}
var SHA22 = class extends Hash {
constructor(blockLen, outputLen, padOffset, isLE3) {
super();
this.blockLen = blockLen;
this.outputLen = outputLen;
this.padOffset = padOffset;
this.isLE = isLE3;
this.finished = false;
this.length = 0;
this.pos = 0;
this.destroyed = false;
this.buffer = new Uint8Array(blockLen);
this.view = createView(this.buffer);
}
update(data) {
assert_default.exists(this);
const { view, buffer, blockLen } = this;
data = toBytes(data);
const len = data.length;
for (let pos = 0; pos < len; ) {
const take = Math.min(blockLen - this.pos, len - pos);
if (take === blockLen) {
const dataView = createView(data);
for (; blockLen <= len - pos; pos += blockLen)
this.process(dataView, pos);
continue;
}
buffer.set(data.subarray(pos, pos + take), this.pos);
this.pos += take;
pos += take;
if (this.pos === blockLen) {
this.process(view, 0);
this.pos = 0;
}
}
this.length += data.length;
this.roundClean();
return this;
}
digestInto(out) {
assert_default.exists(this);
assert_default.output(out, this);
this.finished = true;
const { buffer, view, blockLen, isLE: isLE3 } = this;
let { pos } = this;
buffer[pos++] = 128;
this.buffer.subarray(pos).fill(0);
if (this.padOffset > blockLen - pos) {
this.process(view, 0);
pos = 0;
}
for (let i2 = pos; i2 < blockLen; i2++)
buffer[i2] = 0;
setBigUint642(view, blockLen - 8, BigInt(this.length * 8), isLE3);
this.process(view, 0);
const oview = createView(out);
const len = this.outputLen;
if (len % 4)
throw new Error("_sha2: outputLen should be aligned to 32bit");
const outLen = len / 4;
const state = this.get();
if (outLen > state.length)
throw new Error("_sha2: outputLen bigger than state");
for (let i2 = 0; i2 < outLen; i2++)
oview.setUint32(4 * i2, state[i2], isLE3);
}
digest() {
const { buffer, outputLen } = this;
this.digestInto(buffer);
const res = buffer.slice(0, outputLen);
this.destroy();
return res;
}
_cloneInto(to) {
to || (to = new this.constructor());
to.set(...this.get());
const { blockLen, buffer, length, finished, destroyed, pos } = this;
to.length = length;
to.pos = pos;
to.finished = finished;
to.destroyed = destroyed;
if (length % blockLen)
to.buffer.set(buffer);
return to;
}
};
// node_modules/@noble/hashes/esm/sha256.js
var Chi2 = (a, b, c) => a & b ^ ~a & c;
var Maj2 = (a, b, c) => a & b ^ a & c ^ b & c;
var SHA256_K2 = new Uint32Array([
1116352408,
1899447441,
3049323471,
3921009573,
961987163,
1508970993,
2453635748,
2870763221,
3624381080,
310598401,
607225278,
1426881987,
1925078388,
2162078206,
2614888103,
3248222580,
3835390401,
4022224774,
264347078,
604807628,
770255983,
1249150122,
1555081692,
1996064986,
2554220882,
2821834349,
2952996808,
3210313671,
3336571891,
3584528711,
113926993,
338241895,
666307205,
773529912,
1294757372,
1396182291,
1695183700,
1986661051,
2177026350,
2456956037,
2730485921,
2820302411,
3259730800,
3345764771,
3516065817,
3600352804,
4094571909,
275423344,
430227734,
506948616,
659060556,
883997877,
958139571,
1322822218,
1537002063,
1747873779,
1955562222,
2024104815,
2227730452,
2361852424,
2428436474,
2756734187,
3204031479,
3329325298
]);
var IV2 = new Uint32Array([
1779033703,
3144134277,
1013904242,
2773480762,
1359893119,
2600822924,
528734635,
1541459225
]);
var SHA256_W2 = new Uint32Array(64);
var SHA2562 = class extends SHA22 {
constructor() {
super(64, 32, 8, false);
this.A = IV2[0] | 0;
this.B = IV2[1] | 0;
this.C = IV2[2] | 0;
this.D = IV2[3] | 0;
this.E = IV2[4] | 0;
this.F = IV2[5] | 0;
this.G = IV2[6] | 0;
this.H = IV2[7] | 0;
}
get() {
const { A, B, C, D, E, F, G, H } = this;
return [A, B, C, D, E, F, G, H];
}
set(A, B, C, D, E, F, G, H) {
this.A = A | 0;
this.B = B | 0;
this.C = C | 0;
this.D = D | 0;
this.E = E | 0;
this.F = F | 0;
this.G = G | 0;
this.H = H | 0;
}
process(view, offset) {
for (let i2 = 0; i2 < 16; i2++, offset += 4)
SHA256_W2[i2] = view.getUint32(offset, false);
for (let i2 = 16; i2 < 64; i2++) {
const W15 = SHA256_W2[i2 - 15];
const W2 = SHA256_W2[i2 - 2];
const s0 = rotr(W15, 7) ^ rotr(W15, 18) ^ W15 >>> 3;
const s1 = rotr(W2, 17) ^ rotr(W2, 19) ^ W2 >>> 10;
SHA256_W2[i2] = s1 + SHA256_W2[i2 - 7] + s0 + SHA256_W2[i2 - 16] | 0;
}
let { A, B, C, D, E, F, G, H } = this;
for (let i2 = 0; i2 < 64; i2++) {
const sigma1 = rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25);
const T1 = H + sigma1 + Chi2(E, F, G) + SHA256_K2[i2] + SHA256_W2[i2] | 0;
const sigma0 = rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22);
const T2 = sigma0 + Maj2(A, B, C) | 0;
H = G;
G = F;
F = E;
E = D + T1 | 0;
D = C;
C = B;
B = A;
A = T1 + T2 | 0;
}
A = A + this.A | 0;
B = B + this.B | 0;
C = C + this.C | 0;
D = D + this.D | 0;
E = E + this.E | 0;
F = F + this.F | 0;
G = G + this.G | 0;
H = H + this.H | 0;
this.set(A, B, C, D, E, F, G, H);
}
roundClean() {
SHA256_W2.fill(0);
}
destroy() {
this.set(0, 0, 0, 0, 0, 0, 0, 0);
this.buffer.fill(0);
}
};
var SHA224 = class extends SHA2562 {
constructor() {
super();
this.A = 3238371032 | 0;
this.B = 914150663 | 0;
this.C = 812702999 | 0;
this.D = 4144912697 | 0;
this.E = 4290775857 | 0;
this.F = 1750603025 | 0;
this.G = 1694076839 | 0;
this.H = 3204075428 | 0;
this.outputLen = 28;
}
};
var sha2562 = wrapConstructor(() => new SHA2562());
var sha224 = wrapConstructor(() => new SHA224());
// node_modules/nostr-tools/lib/esm/pool.js
var verifiedSymbol = Symbol("verified");
var isRecord = (obj) => obj instanceof Object;
function validateEvent(event) {
if (!isRecord(event))
return false;
if (typeof event.kind !== "number")
return false;
if (typeof event.content !== "string")
return false;
if (typeof event.created_at !== "number")
return false;
if (typeof event.pubkey !== "string")
return false;
if (!event.pubkey.match(/^[a-f0-9]{64}$/))
return false;
if (!Array.isArray(event.tags))
return false;
for (let i2 = 0; i2 < event.tags.length; i2++) {
let tag = event.tags[i2];
if (!Array.isArray(tag))
return false;
for (let j = 0; j < tag.length; j++) {
if (typeof tag[j] === "object")
return false;
}
}
return true;
}
var utf8Decoder2 = new TextDecoder("utf-8");
var utf8Encoder2 = new TextEncoder();
function normalizeURL(url) {
if (url.indexOf("://") === -1)
url = "wss://" + url;
let p = new URL(url);
p.pathname = p.pathname.replace(/\/+/g, "/");
if (p.pathname.endsWith("/"))
p.pathname = p.pathname.slice(0, -1);
if (p.port === "80" && p.protocol === "ws:" || p.port === "443" && p.protocol === "wss:")
p.port = "";
p.searchParams.sort();
p.hash = "";
return p.toString();
}
var QueueNode = class {
value;
next = null;
prev = null;
constructor(message) {
this.value = message;
}
};
var Queue = class {
first;
last;
constructor() {
this.first = null;
this.last = null;
}
enqueue(value) {
const newNode = new QueueNode(value);
if (!this.last) {
this.first = newNode;
this.last = newNode;
} else if (this.last === this.first) {
this.last = newNode;
this.last.prev = this.first;
this.first.next = newNode;
} else {
newNode.prev = this.last;
this.last.next = newNode;
this.last = newNode;
}
return true;
}
dequeue() {
if (!this.first)
return null;
if (this.first === this.last) {
const target2 = this.first;
this.first = null;
this.last = null;
return target2.value;
}
const target = this.first;
this.first = target.next;
return target.value;
}
};
var JS = class {
generateSecretKey() {
return schnorr.utils.randomPrivateKey();
}
getPublicKey(secretKey) {
return bytesToHex(schnorr.getPublicKey(secretKey));
}
finalizeEvent(t, secretKey) {
const event = t;
event.pubkey = bytesToHex(schnorr.getPublicKey(secretKey));
event.id = getEventHash(event);
event.sig = bytesToHex(schnorr.sign(getEventHash(event), secretKey));
event[verifiedSymbol] = true;
return event;
}
verifyEvent(event) {
if (typeof event[verifiedSymbol] === "boolean")
return event[verifiedSymbol];
const hash3 = getEventHash(event);
if (hash3 !== event.id) {
event[verifiedSymbol] = false;
return false;
}
try {
const valid = schnorr.verify(event.sig, hash3, event.pubkey);
event[verifiedSymbol] = valid;
return valid;
} catch (err) {
event[verifiedSymbol] = false;
return false;
}
}
};
function serializeEvent(evt) {
if (!validateEvent(evt))
throw new Error("can't serialize event with wrong or missing properties");
return JSON.stringify([0, evt.pubkey, evt.created_at, evt.kind, evt.tags, evt.content]);
}
function getEventHash(event) {
let eventHash = sha2562(utf8Encoder2.encode(serializeEvent(event)));
return bytesToHex(eventHash);
}
var i = new JS();
var generateSecretKey = i.generateSecretKey;
var getPublicKey = i.getPublicKey;
var finalizeEvent = i.finalizeEvent;
var verifyEvent = i.verifyEvent;
var ClientAuth = 22242;
function matchFilter(filter, event) {
if (filter.ids && filter.ids.indexOf(event.id) === -1) {
return false;
}
if (filter.kinds && filter.kinds.indexOf(event.kind) === -1) {
return false;
}
if (filter.authors && filter.authors.indexOf(event.pubkey) === -1) {
return false;
}
for (let f in filter) {
if (f[0] === "#") {
let tagName = f.slice(1);
let values = filter[`#${tagName}`];
if (values && !event.tags.find(([t, v]) => t === f.slice(1) && values.indexOf(v) !== -1))
return false;
}
}
if (filter.since && event.created_at < filter.since)
return false;
if (filter.until && event.created_at > filter.until)
return false;
return true;
}
function matchFilters(filters, event) {
for (let i2 = 0; i2 < filters.length; i2++) {
if (matchFilter(filters[i2], event)) {
return true;
}
}
return false;
}
function getHex64(json, field) {
let len = field.length + 3;
let idx = json.indexOf(`"${field}":`) + len;
let s = json.slice(idx).indexOf(`"`) + idx + 1;
return json.slice(s, s + 64);
}
function getSubscriptionId(json) {
let idx = json.slice(0, 22).indexOf(`"EVENT"`);
if (idx === -1)
return null;
let pstart = json.slice(idx + 7 + 1).indexOf(`"`);
if (pstart === -1)
return null;
let start = idx + 7 + 1 + pstart;
let pend = json.slice(start + 1, 80).indexOf(`"`);
if (pend === -1)
return null;
let end = start + 1 + pend;
return json.slice(start + 1, end);
}
function makeAuthEvent(relayURL, challenge2) {
return {
kind: ClientAuth,
created_at: Math.floor(Date.now() / 1e3),
tags: [
["relay", relayURL],
["challenge", challenge2]
],
content: ""
};
}
async function yieldThread() {
return new Promise((resolve) => {
const ch = new MessageChannel();
const handler = () => {
ch.port1.removeEventListener("message", handler);
resolve();
};
ch.port1.addEventListener("message", handler);
ch.port2.postMessage(0);
ch.port1.start();
});
}
var alwaysTrue = (t) => {
t[verifiedSymbol] = true;
return true;
};
var AbstractRelay = class {
url;
_connected = false;
onclose = null;
onnotice = (msg) => console.debug(`NOTICE from ${this.url}: ${msg}`);
_onauth = null;
baseEoseTimeout = 4400;
connectionTimeout = 4400;
openSubs = /* @__PURE__ */ new Map();
connectionTimeoutHandle;
connectionPromise;
openCountRequests = /* @__PURE__ */ new Map();
openEventPublishes = /* @__PURE__ */ new Map();
ws;
incomingMessageQueue = new Queue();
queueRunning = false;
challenge;
serial = 0;
verifyEvent;
_WebSocket;
constructor(url, opts) {
this.url = normalizeURL(url);
this.verifyEvent = opts.verifyEvent;
this._WebSocket = opts.websocketImplementation || WebSocket;
}
static async connect(url, opts) {
const relay = new AbstractRelay(url, opts);
await relay.connect();
return relay;
}
closeAllSubscriptions(reason) {
for (let [_, sub] of this.openSubs) {
sub.close(reason);
}
this.openSubs.clear();
for (let [_, ep] of this.openEventPublishes) {
ep.reject(new Error(reason));
}
this.openEventPublishes.clear();
for (let [_, cr] of this.openCountRequests) {
cr.reject(new Error(reason));
}
this.openCountRequests.clear();
}
get connected() {
return this._connected;
}
async connect() {
if (this.connectionPromise)
return this.connectionPromise;
this.challenge = void 0;
this.connectionPromise = new Promise((resolve, reject) => {
this.connectionTimeoutHandle = setTimeout(() => {
reject("connection timed out");
this.connectionPromise = void 0;
this.onclose?.();
this.closeAllSubscriptions("relay connection timed out");
}, this.connectionTimeout);
try {
this.ws = new this._WebSocket(this.url);
} catch (err) {
reject(err);
return;
}
this.ws.onopen = () => {
clearTimeout(this.connectionTimeoutHandle);
this._connected = true;
resolve();
};
this.ws.onerror = (ev) => {
reject(ev.message || "websocket error");
if (this._connected) {
this._connected = false;
this.connectionPromise = void 0;
this.onclose?.();
this.closeAllSubscriptions("relay connection errored");
}
};
this.ws.onclose = async () => {
if (this._connected) {
this._connected = false;
this.connectionPromise = void 0;
this.onclose?.();
this.closeAllSubscriptions("relay connection closed");
}
};
this.ws.onmessage = this._onmessage.bind(this);
});
return this.connectionPromise;
}
async runQueue() {
this.queueRunning = true;
while (true) {
if (false === this.handleNext()) {
break;
}
await yieldThread();
}
this.queueRunning = false;
}
handleNext() {
const json = this.incomingMessageQueue.dequeue();
if (!json) {
return false;
}
const subid = getSubscriptionId(json);
if (subid) {
const so = this.openSubs.get(subid);
if (!so) {
return;
}
const id = getHex64(json, "id");
const alreadyHave = so.alreadyHaveEvent?.(id);
so.receivedEvent?.(this, id);
if (alreadyHave) {
return;
}
}
try {
let data = JSON.parse(json);
switch (data[0]) {
case "EVENT": {
const so = this.openSubs.get(data[1]);
const event = data[2];
if (this.verifyEvent(event) && matchFilters(so.filters, event)) {
so.onevent(event);
}
return;
}
case "COUNT": {
const id = data[1];
const payload = data[2];
const cr = this.openCountRequests.get(id);
if (cr) {
cr.resolve(payload.count);
this.openCountRequests.delete(id);
}
return;
}
case "EOSE": {
const so = this.openSubs.get(data[1]);
if (!so)
return;
so.receivedEose();
return;
}
case "OK": {
const id = data[1];
const ok = data[2];
const reason = data[3];
const ep = this.openEventPublishes.get(id);
if (ok)
ep.resolve(reason);
else
ep.reject(new Error(reason));
this.openEventPublishes.delete(id);
return;
}
case "CLOSED": {
const id = data[1];
const so = this.openSubs.get(id);
if (!so)
return;
so.closed = true;
so.close(data[2]);
return;
}
case "NOTICE":
this.onnotice(data[1]);
return;
case "AUTH": {
this.challenge = data[1];
this._onauth?.(data[1]);
return;
}
}
} catch (err) {
return;
}
}
async send(message) {
if (!this.connectionPromise)
throw new Error("sending on closed connection");
this.connectionPromise.then(() => {
this.ws?.send(message);
});
}
async auth(signAuthEvent) {
if (!this.challenge)
throw new Error("can't perform auth, no challenge was received");
const evt = await signAuthEvent(makeAuthEvent(this.url, this.challenge));
const ret = new Promise((resolve, reject) => {
this.openEventPublishes.set(evt.id, { resolve, reject });
});
this.send('["AUTH",' + JSON.stringify(evt) + "]");
return ret;
}
async publish(event) {
const ret = new Promise((resolve, reject) => {
this.openEventPublishes.set(event.id, { resolve, reject });
});
this.send('["EVENT",' + JSON.stringify(event) + "]");
return ret;
}
async count(filters, params) {
this.serial++;
const id = params?.id || "count:" + this.serial;
const ret = new Promise((resolve, reject) => {
this.openCountRequests.set(id, { resolve, reject });
});
this.send('["COUNT","' + id + '",' + JSON.stringify(filters).substring(1));
return ret;
}
subscribe(filters, params) {
const subscription = this.prepareSubscription(filters, params);
subscription.fire();
return subscription;
}
prepareSubscription(filters, params) {
this.serial++;
const id = params.id || "sub:" + this.serial;
const subscription = new Subscription(this, id, filters, params);
this.openSubs.set(id, subscription);
return subscription;
}
close() {
this.closeAllSubscriptions("relay connection closed by us");
this._connected = false;
this.ws?.close();
}
_onmessage(ev) {
this.incomingMessageQueue.enqueue(ev.data);
if (!this.queueRunning) {
this.runQueue();
}
}
};
var Subscription = class {
relay;
id;
closed = false;
eosed = false;
filters;
alreadyHaveEvent;
receivedEvent;
onevent;
oneose;
onclose;
eoseTimeout;
eoseTimeoutHandle;
constructor(relay, id, filters, params) {
this.relay = relay;
this.filters = filters;
this.id = id;
this.alreadyHaveEvent = params.alreadyHaveEvent;
this.receivedEvent = params.receivedEvent;
this.eoseTimeout = params.eoseTimeout || relay.baseEoseTimeout;
this.oneose = params.oneose;
this.onclose = params.onclose;
this.onevent = params.onevent || ((event) => {
console.warn(
`onevent() callback not defined for subscription '${this.id}' in relay ${this.relay.url}. event received:`,
event
);
});
}
fire() {
this.relay.send('["REQ","' + this.id + '",' + JSON.stringify(this.filters).substring(1));
this.eoseTimeoutHandle = setTimeout(this.receivedEose.bind(this), this.eoseTimeout);
}
receivedEose() {
if (this.eosed)
return;
clearTimeout(this.eoseTimeoutHandle);
this.eosed = true;
this.oneose?.();
}
close(reason = "closed by caller") {
if (!this.closed && this.relay.connected) {
this.relay.send('["CLOSE",' + JSON.stringify(this.id) + "]");
this.closed = true;
}
this.relay.openSubs.delete(this.id);
this.onclose?.(reason);
}
};
var AbstractSimplePool = class {
relays = /* @__PURE__ */ new Map();
seenOn = /* @__PURE__ */ new Map();
trackRelays = false;
verifyEvent;
trustedRelayURLs = /* @__PURE__ */ new Set();
_WebSocket;
constructor(opts) {
this.verifyEvent = opts.verifyEvent;
this._WebSocket = opts.websocketImplementation;
}
async ensureRelay(url, params) {
url = normalizeURL(url);
let relay = this.relays.get(url);
if (!relay) {
relay = new AbstractRelay(url, {
verifyEvent: this.trustedRelayURLs.has(url) ? alwaysTrue : this.verifyEvent,
websocketImplementation: this._WebSocket
});
if (params?.connectionTimeout)
relay.connectionTimeout = params.connectionTimeout;
this.relays.set(url, relay);
}
await relay.connect();
return relay;
}
close(relays) {
relays.map(normalizeURL).forEach((url) => {
this.relays.get(url)?.close();
});
}
subscribeMany(relays, filters, params) {
return this.subscribeManyMap(Object.fromEntries(relays.map((url) => [url, filters])), params);
}
subscribeManyMap(requests, params) {
if (this.trackRelays) {
params.receivedEvent = (relay, id) => {
let set = this.seenOn.get(id);
if (!set) {
set = /* @__PURE__ */ new Set();
this.seenOn.set(id, set);
}
set.add(relay);
};
}
const _knownIds = /* @__PURE__ */ new Set();
const subs = [];
const relaysLength = Object.keys(requests).length;
const eosesReceived = [];
let handleEose = (i2) => {
eosesReceived[i2] = true;
if (eosesReceived.filter((a) => a).length === relaysLength) {
params.oneose?.();
handleEose = () => {
};
}
};
const closesReceived = [];
let handleClose = (i2, reason) => {
handleEose(i2);
closesReceived[i2] = reason;
if (closesReceived.filter((a) => a).length === relaysLength) {
params.onclose?.(closesReceived);
handleClose = () => {
};
}
};
const localAlreadyHaveEventHandler = (id) => {
if (params.alreadyHaveEvent?.(id)) {
return true;
}
const have = _knownIds.has(id);
_knownIds.add(id);
return have;
};
const allOpened = Promise.all(
Object.entries(requests).map(async (req, i2, arr) => {
if (arr.indexOf(req) !== i2) {
handleClose(i2, "duplicate url");
return;
}
let [url, filters] = req;
url = normalizeURL(url);
let relay;
try {
relay = await this.ensureRelay(url, {
connectionTimeout: params.maxWait ? Math.max(params.maxWait * 0.8, params.maxWait - 1e3) : void 0
});
} catch (err) {
handleClose(i2, err?.message || String(err));
return;
}
let subscription = relay.subscribe(filters, {
...params,
oneose: () => handleEose(i2),
onclose: (reason) => handleClose(i2, reason),
alreadyHaveEvent: localAlreadyHaveEventHandler,
eoseTimeout: params.maxWait
});
subs.push(subscription);
})
);
return {
async close() {
await allOpened;
subs.forEach((sub) => {
sub.close();
});
}
};
}
subscribeManyEose(relays, filters, params) {
const subcloser = this.subscribeMany(relays, filters, {
...params,
oneose() {
subcloser.close();
}
});
return subcloser;
}
async querySync(relays, filter, params) {
return new Promise(async (resolve) => {
const events = [];
this.subscribeManyEose(relays, [filter], {
...params,
onevent(event) {
events.push(event);
},
onclose(_) {
resolve(events);
}
});
});
}
async get(relays, filter, params) {
filter.limit = 1;
const events = await this.querySync(relays, filter, params);
events.sort((a, b) => b.created_at - a.created_at);
return events[0] || null;
}
publish(relays, event) {
return relays.map(normalizeURL).map(async (url, i2, arr) => {
if (arr.indexOf(url) !== i2) {
return Promise.reject("duplicate url");
}
let r = await this.ensureRelay(url);
return r.publish(event);
});
}
};
var _WebSocket;
try {
_WebSocket = WebSocket;
} catch {
}
var SimplePool = class extends AbstractSimplePool {
constructor() {
super({ verifyEvent, websocketImplementation: _WebSocket });
}
};
// node_modules/nostr-tools/lib/esm/nip05.js
var NIP05_REGEX = /^(?:([\w.+-]+)@)?([\w_-]+(\.[\w_-]+)+)$/;
var _fetch;
try {
_fetch = fetch;
} catch {
}
async function queryProfile(fullname) {
const match = fullname.match(NIP05_REGEX);
if (!match)
return null;
const [_, name = "_", domain] = match;
try {
const url = `https://${domain}/.well-known/nostr.json?name=${name}`;
const res = await (await _fetch(url, { redirect: "error" })).json();
let pubkey = res.names[name];
return pubkey ? { pubkey, relays: res.relays?.[pubkey] } : null;
} catch (_e) {
return null;
}
}
// metadata.ts
var import_lru_cache = __toESM(require_lru_cache(), 1);
var pool = window.nostrSharedPool || new SimplePool();
var metadataCache = window.nostrMetadataCache || new import_lru_cache.default(2e3);
function fetchMetadata(pubkey, hints) {
let metadata = metadataCache.get(pubkey);
if (metadata)
return metadata;
const relays = ["wss://purplepag.es", "wss://user.kindpag.es", "wss://relay.nos.social"];
relays.push(...hints);
let promise = new Promise(
(resolve, reject) => pool.subscribeManyEose(
relays,
[
{
kinds: [0],
authors: [pubkey]
}
],
{
onevent(evt) {
try {
resolve(JSON.parse(evt.content));
} catch (err) {
}
},
onclose: reject
}
)
);
metadataCache.set(pubkey, promise);
return promise;
}
async function inputToPubkey(input) {
try {
const { type, data } = decode(input);
if (type === "nprofile") {
return [data.pubkey, data.relays || []];
} else if (type === "npub") {
return [data, []];
}
} catch (err) {
if (input.match(/[0-9a-f]{64}/)) {
return [input, []];
} else if (input.match(".")) {
let res = await queryProfile(input);
if (!res)
return [void 0];
return [res.pubkey, res.relays || []];
}
}
return [void 0];
}
// nostr-picture.ts
var import_debounce = __toESM(require_debounce(), 1);
// utils.ts
var transparentPixel = "";
function handleImageError(ev) {
const el = ev.target;
console.log("error loading image", ev);
if (el.src !== transparentPixel) {
el.src = transparentPixel;
}
}
// nostr-picture.ts
var NostrPicture = class extends HTMLElement {
img;
constructor() {
super();
this.img = document.createElement("img");
this.img.setAttribute("part", "img");
this.img.onerror = handleImageError;
this.attachShadow({ mode: "open" });
const { shadowRoot } = this;
shadowRoot.appendChild(this.img);
}
connectedCallback() {
this.style.display = "inline-block";
this.style.width = "fit-content";
this.style.height = "fit-content";
this.set();
}
attributeChangedCallback(name, _, value) {
if (name === "pubkey")
this.set();
else if (name === "width" || name === "height")
this.img.setAttribute(name, value);
}
set = (0, import_debounce.default)(async () => {
let input = this.getAttribute("pubkey");
if (input) {
let [pubkey, hints] = await inputToPubkey(input);
if (pubkey) {
let metadata = await fetchMetadata(pubkey, hints || []);
this.img.src = metadata.picture || transparentPixel;
let name = metadata.name || metadata.display_name || npubEncode(pubkey);
this.img.alt = `picture for "${name}"`;
}
}
}, 200);
};
__publicField(NostrPicture, "observedAttributes", ["pubkey", "width", "height"]);
window.customElements.define("nostr-picture", NostrPicture);
})();