"use strict"; (() => { var __create = Object.create; var __defProp = Object.defineProperty; var __getOwnPropDesc = Object.getOwnPropertyDescriptor; var __getOwnPropNames = Object.getOwnPropertyNames; var __getProtoOf = Object.getPrototypeOf; var __hasOwnProp = Object.prototype.hasOwnProperty; var __defNormalProp = (obj, key, value) => key in obj ? __defProp(obj, key, { enumerable: true, configurable: true, writable: true, value }) : obj[key] = value; var __commonJS = (cb, mod2) => function __require() { return mod2 || (0, cb[__getOwnPropNames(cb)[0]])((mod2 = { exports: {} }).exports, mod2), mod2.exports; }; var __export = (target, all) => { for (var name in all) __defProp(target, name, { get: all[name], enumerable: true }); }; var __copyProps = (to, from, except, desc) => { if (from && typeof from === "object" || typeof from === "function") { for (let key of __getOwnPropNames(from)) if (!__hasOwnProp.call(to, key) && key !== except) __defProp(to, key, { get: () => from[key], enumerable: !(desc = __getOwnPropDesc(from, key)) || desc.enumerable }); } return to; }; var __toESM = (mod2, isNodeMode, target) => (target = mod2 != null ? __create(__getProtoOf(mod2)) : {}, __copyProps( isNodeMode || !mod2 || !mod2.__esModule ? __defProp(target, "default", { value: mod2, enumerable: true }) : target, mod2 )); var __publicField = (obj, key, value) => { __defNormalProp(obj, typeof key !== "symbol" ? key + "" : key, value); return value; }; // node_modules/obliterator/iterator.js var require_iterator = __commonJS({ "node_modules/obliterator/iterator.js"(exports, module) { function Iterator(next) { if (typeof next !== "function") throw new Error("obliterator/iterator: expecting a function!"); this.next = next; } if (typeof Symbol !== "undefined") Iterator.prototype[Symbol.iterator] = function() { return this; }; Iterator.of = function() { var args = arguments, l = args.length, i2 = 0; return new Iterator(function() { if (i2 >= l) return { done: true }; return { done: false, value: args[i2++] }; }); }; Iterator.empty = function() { var iterator = new Iterator(function() { return { done: true }; }); return iterator; }; Iterator.fromSequence = function(sequence) { var i2 = 0, l = sequence.length; return new Iterator(function() { if (i2 >= l) return { done: true }; return { done: false, value: sequence[i2++] }; }); }; Iterator.is = function(value) { if (value instanceof Iterator) return true; return typeof value === "object" && value !== null && typeof value.next === "function"; }; module.exports = Iterator; } }); // node_modules/obliterator/support.js var require_support = __commonJS({ "node_modules/obliterator/support.js"(exports) { exports.ARRAY_BUFFER_SUPPORT = typeof ArrayBuffer !== "undefined"; exports.SYMBOL_SUPPORT = typeof Symbol !== "undefined"; } }); // node_modules/obliterator/foreach.js var require_foreach = __commonJS({ "node_modules/obliterator/foreach.js"(exports, module) { var support = require_support(); var ARRAY_BUFFER_SUPPORT = support.ARRAY_BUFFER_SUPPORT; var SYMBOL_SUPPORT = support.SYMBOL_SUPPORT; module.exports = function forEach(iterable, callback) { var iterator, k, i2, l, s; if (!iterable) throw new Error("obliterator/forEach: invalid iterable."); if (typeof callback !== "function") throw new Error("obliterator/forEach: expecting a callback."); if (Array.isArray(iterable) || ARRAY_BUFFER_SUPPORT && ArrayBuffer.isView(iterable) || typeof iterable === "string" || iterable.toString() === "[object Arguments]") { for (i2 = 0, l = iterable.length; i2 < l; i2++) callback(iterable[i2], i2); return; } if (typeof iterable.forEach === "function") { iterable.forEach(callback); return; } if (SYMBOL_SUPPORT && Symbol.iterator in iterable && typeof iterable.next !== "function") { iterable = iterable[Symbol.iterator](); } if (typeof iterable.next === "function") { iterator = iterable; i2 = 0; while (s = iterator.next(), s.done !== true) { callback(s.value, i2); i2++; } return; } for (k in iterable) { if (iterable.hasOwnProperty(k)) { callback(iterable[k], k); } } return; }; } }); // node_modules/mnemonist/utils/typed-arrays.js var require_typed_arrays = __commonJS({ "node_modules/mnemonist/utils/typed-arrays.js"(exports) { var MAX_8BIT_INTEGER = Math.pow(2, 8) - 1; var MAX_16BIT_INTEGER = Math.pow(2, 16) - 1; var MAX_32BIT_INTEGER = Math.pow(2, 32) - 1; var MAX_SIGNED_8BIT_INTEGER = Math.pow(2, 7) - 1; var MAX_SIGNED_16BIT_INTEGER = Math.pow(2, 15) - 1; var MAX_SIGNED_32BIT_INTEGER = Math.pow(2, 31) - 1; exports.getPointerArray = function(size) { var maxIndex = size - 1; if (maxIndex <= MAX_8BIT_INTEGER) return Uint8Array; if (maxIndex <= MAX_16BIT_INTEGER) return Uint16Array; if (maxIndex <= MAX_32BIT_INTEGER) return Uint32Array; throw new Error("mnemonist: Pointer Array of size > 4294967295 is not supported."); }; exports.getSignedPointerArray = function(size) { var maxIndex = size - 1; if (maxIndex <= MAX_SIGNED_8BIT_INTEGER) return Int8Array; if (maxIndex <= MAX_SIGNED_16BIT_INTEGER) return Int16Array; if (maxIndex <= MAX_SIGNED_32BIT_INTEGER) return Int32Array; return Float64Array; }; exports.getNumberType = function(value) { if (value === (value | 0)) { if (Math.sign(value) === -1) { if (value <= 127 && value >= -128) return Int8Array; if (value <= 32767 && value >= -32768) return Int16Array; return Int32Array; } else { if (value <= 255) return Uint8Array; if (value <= 65535) return Uint16Array; return Uint32Array; } } return Float64Array; }; var TYPE_PRIORITY = { Uint8Array: 1, Int8Array: 2, Uint16Array: 3, Int16Array: 4, Uint32Array: 5, Int32Array: 6, Float32Array: 7, Float64Array: 8 }; exports.getMinimalRepresentation = function(array, getter) { var maxType = null, maxPriority = 0, p, t, v, i2, l; for (i2 = 0, l = array.length; i2 < l; i2++) { v = getter ? getter(array[i2]) : array[i2]; t = exports.getNumberType(v); p = TYPE_PRIORITY[t.name]; if (p > maxPriority) { maxPriority = p; maxType = t; } } return maxType; }; exports.isTypedArray = function(value) { return typeof ArrayBuffer !== "undefined" && ArrayBuffer.isView(value); }; exports.concat = function() { var length = 0, i2, o, l; for (i2 = 0, l = arguments.length; i2 < l; i2++) length += arguments[i2].length; var array = new arguments[0].constructor(length); for (i2 = 0, o = 0; i2 < l; i2++) { array.set(arguments[i2], o); o += arguments[i2].length; } return array; }; exports.indices = function(length) { var PointerArray = exports.getPointerArray(length); var array = new PointerArray(length); for (var i2 = 0; i2 < length; i2++) array[i2] = i2; return array; }; } }); // node_modules/mnemonist/utils/iterables.js var require_iterables = __commonJS({ "node_modules/mnemonist/utils/iterables.js"(exports) { var forEach = require_foreach(); var typed = require_typed_arrays(); function isArrayLike(target) { return Array.isArray(target) || typed.isTypedArray(target); } function guessLength(target) { if (typeof target.length === "number") return target.length; if (typeof target.size === "number") return target.size; return; } function toArray(target) { var l = guessLength(target); var array = typeof l === "number" ? new Array(l) : []; var i2 = 0; forEach(target, function(value) { array[i2++] = value; }); return array; } function toArrayWithIndices(target) { var l = guessLength(target); var IndexArray = typeof l === "number" ? typed.getPointerArray(l) : Array; var array = typeof l === "number" ? new Array(l) : []; var indices = typeof l === "number" ? new IndexArray(l) : []; var i2 = 0; forEach(target, function(value) { array[i2] = value; indices[i2] = i2++; }); return [array, indices]; } exports.isArrayLike = isArrayLike; exports.guessLength = guessLength; exports.toArray = toArray; exports.toArrayWithIndices = toArrayWithIndices; } }); // node_modules/mnemonist/lru-cache.js var require_lru_cache = __commonJS({ "node_modules/mnemonist/lru-cache.js"(exports, module) { var Iterator = require_iterator(); var forEach = require_foreach(); var typed = require_typed_arrays(); var iterables = require_iterables(); function LRUCache2(Keys, Values, capacity) { if (arguments.length < 2) { capacity = Keys; Keys = null; Values = null; } this.capacity = capacity; if (typeof this.capacity !== "number" || this.capacity <= 0) throw new Error("mnemonist/lru-cache: capacity should be positive number."); else if (!isFinite(this.capacity) || Math.floor(this.capacity) !== this.capacity) throw new Error("mnemonist/lru-cache: capacity should be a finite positive integer."); var PointerArray = typed.getPointerArray(capacity); this.forward = new PointerArray(capacity); this.backward = new PointerArray(capacity); this.K = typeof Keys === "function" ? new Keys(capacity) : new Array(capacity); this.V = typeof Values === "function" ? new Values(capacity) : new Array(capacity); this.size = 0; this.head = 0; this.tail = 0; this.items = {}; } LRUCache2.prototype.clear = function() { this.size = 0; this.head = 0; this.tail = 0; this.items = {}; }; LRUCache2.prototype.splayOnTop = function(pointer) { var oldHead = this.head; if (this.head === pointer) return this; var previous = this.backward[pointer], next = this.forward[pointer]; if (this.tail === pointer) { this.tail = previous; } else { this.backward[next] = previous; } this.forward[previous] = next; this.backward[oldHead] = pointer; this.head = pointer; this.forward[pointer] = oldHead; return this; }; LRUCache2.prototype.set = function(key, value) { var pointer = this.items[key]; if (typeof pointer !== "undefined") { this.splayOnTop(pointer); this.V[pointer] = value; return; } if (this.size < this.capacity) { pointer = this.size++; } else { pointer = this.tail; this.tail = this.backward[pointer]; delete this.items[this.K[pointer]]; } this.items[key] = pointer; this.K[pointer] = key; this.V[pointer] = value; this.forward[pointer] = this.head; this.backward[this.head] = pointer; this.head = pointer; }; LRUCache2.prototype.setpop = function(key, value) { var oldValue = null; var oldKey = null; var pointer = this.items[key]; if (typeof pointer !== "undefined") { this.splayOnTop(pointer); oldValue = this.V[pointer]; this.V[pointer] = value; return { evicted: false, key, value: oldValue }; } if (this.size < this.capacity) { pointer = this.size++; } else { pointer = this.tail; this.tail = this.backward[pointer]; oldValue = this.V[pointer]; oldKey = this.K[pointer]; delete this.items[oldKey]; } this.items[key] = pointer; this.K[pointer] = key; this.V[pointer] = value; this.forward[pointer] = this.head; this.backward[this.head] = pointer; this.head = pointer; if (oldKey) { return { evicted: true, key: oldKey, value: oldValue }; } else { return null; } }; LRUCache2.prototype.has = function(key) { return key in this.items; }; LRUCache2.prototype.get = function(key) { var pointer = this.items[key]; if (typeof pointer === "undefined") return; this.splayOnTop(pointer); return this.V[pointer]; }; LRUCache2.prototype.peek = function(key) { var pointer = this.items[key]; if (typeof pointer === "undefined") return; return this.V[pointer]; }; LRUCache2.prototype.forEach = function(callback, scope) { scope = arguments.length > 1 ? scope : this; var i2 = 0, l = this.size; var pointer = this.head, keys = this.K, values = this.V, forward = this.forward; while (i2 < l) { callback.call(scope, values[pointer], keys[pointer], this); pointer = forward[pointer]; i2++; } }; LRUCache2.prototype.keys = function() { var i2 = 0, l = this.size; var pointer = this.head, keys = this.K, forward = this.forward; return new Iterator(function() { if (i2 >= l) return { done: true }; var key = keys[pointer]; i2++; if (i2 < l) pointer = forward[pointer]; return { done: false, value: key }; }); }; LRUCache2.prototype.values = function() { var i2 = 0, l = this.size; var pointer = this.head, values = this.V, forward = this.forward; return new Iterator(function() { if (i2 >= l) return { done: true }; var value = values[pointer]; i2++; if (i2 < l) pointer = forward[pointer]; return { done: false, value }; }); }; LRUCache2.prototype.entries = function() { var i2 = 0, l = this.size; var pointer = this.head, keys = this.K, values = this.V, forward = this.forward; return new Iterator(function() { if (i2 >= l) return { done: true }; var key = keys[pointer], value = values[pointer]; i2++; if (i2 < l) pointer = forward[pointer]; return { done: false, value: [key, value] }; }); }; if (typeof Symbol !== "undefined") LRUCache2.prototype[Symbol.iterator] = LRUCache2.prototype.entries; LRUCache2.prototype.inspect = function() { var proxy = /* @__PURE__ */ new Map(); var iterator = this.entries(), step; while (step = iterator.next(), !step.done) proxy.set(step.value[0], step.value[1]); Object.defineProperty(proxy, "constructor", { value: LRUCache2, enumerable: false }); return proxy; }; if (typeof Symbol !== "undefined") LRUCache2.prototype[Symbol.for("nodejs.util.inspect.custom")] = LRUCache2.prototype.inspect; LRUCache2.from = function(iterable, Keys, Values, capacity) { if (arguments.length < 2) { capacity = iterables.guessLength(iterable); if (typeof capacity !== "number") throw new Error("mnemonist/lru-cache.from: could not guess iterable length. Please provide desired capacity as last argument."); } else if (arguments.length === 2) { capacity = Keys; Keys = null; Values = null; } var cache = new LRUCache2(Keys, Values, capacity); forEach(iterable, function(value, key) { cache.set(key, value); }); return cache; }; module.exports = LRUCache2; } }); // node_modules/debounce/index.js var require_debounce = __commonJS({ "node_modules/debounce/index.js"(exports, module) { function debounce2(function_, wait = 100, options = {}) { if (typeof function_ !== "function") { throw new TypeError(`Expected the first parameter to be a function, got \`${typeof function_}\`.`); } if (wait < 0) { throw new RangeError("`wait` must not be negative."); } const { immediate } = typeof options === "boolean" ? { immediate: options } : options; let storedContext; let storedArguments; let timeoutId; let timestamp; let result; function run() { const callContext = storedContext; const callArguments = storedArguments; storedContext = void 0; storedArguments = void 0; result = function_.apply(callContext, callArguments); return result; } function later() { const last = Date.now() - timestamp; if (last < wait && last >= 0) { timeoutId = setTimeout(later, wait - last); } else { timeoutId = void 0; if (!immediate) { result = run(); } } } const debounced = function(...arguments_) { if (storedContext && this !== storedContext) { throw new Error("Debounced method called with different contexts."); } storedContext = this; storedArguments = arguments_; timestamp = Date.now(); const callNow = immediate && !timeoutId; if (!timeoutId) { timeoutId = setTimeout(later, wait); } if (callNow) { result = run(); } return result; }; debounced.clear = () => { if (!timeoutId) { return; } clearTimeout(timeoutId); timeoutId = void 0; }; debounced.flush = () => { if (!timeoutId) { return; } debounced.trigger(); }; debounced.trigger = () => { result = run(); debounced.clear(); }; return debounced; } module.exports.debounce = debounce2; module.exports = debounce2; } }); // node_modules/@noble/hashes/esm/crypto.js var crypto = typeof globalThis === "object" && "crypto" in globalThis ? globalThis.crypto : void 0; // node_modules/@noble/hashes/esm/utils.js var u8a = (a) => a instanceof Uint8Array; var createView = (arr) => new DataView(arr.buffer, arr.byteOffset, arr.byteLength); var rotr = (word, shift) => word << 32 - shift | word >>> shift; var isLE = new Uint8Array(new Uint32Array([287454020]).buffer)[0] === 68; if (!isLE) throw new Error("Non little-endian hardware is not supported"); var hexes = Array.from({ length: 256 }, (v, i2) => i2.toString(16).padStart(2, "0")); function bytesToHex(bytes3) { if (!u8a(bytes3)) throw new Error("Uint8Array expected"); let hex2 = ""; for (let i2 = 0; i2 < bytes3.length; i2++) { hex2 += hexes[bytes3[i2]]; } return hex2; } function hexToBytes(hex2) { if (typeof hex2 !== "string") throw new Error("hex string expected, got " + typeof hex2); const len = hex2.length; if (len % 2) throw new Error("padded hex string expected, got unpadded hex of length " + len); const array = new Uint8Array(len / 2); for (let i2 = 0; i2 < array.length; i2++) { const j = i2 * 2; const hexByte = hex2.slice(j, j + 2); const byte = Number.parseInt(hexByte, 16); if (Number.isNaN(byte) || byte < 0) throw new Error("Invalid byte sequence"); array[i2] = byte; } return array; } function utf8ToBytes(str) { if (typeof str !== "string") throw new Error(`utf8ToBytes expected string, got ${typeof str}`); return new Uint8Array(new TextEncoder().encode(str)); } function toBytes(data) { if (typeof data === "string") data = utf8ToBytes(data); if (!u8a(data)) throw new Error(`expected Uint8Array, got ${typeof data}`); return data; } var Hash = class { clone() { return this._cloneInto(); } }; function wrapConstructor(hashCons) { const hashC = (msg) => hashCons().update(toBytes(msg)).digest(); const tmp = hashCons(); hashC.outputLen = tmp.outputLen; hashC.blockLen = tmp.blockLen; hashC.create = () => hashCons(); return hashC; } // node_modules/@scure/base/lib/esm/index.js function assertNumber(n) { if (!Number.isSafeInteger(n)) throw new Error(`Wrong integer: ${n}`); } function chain(...args) { const wrap = (a, b) => (c) => a(b(c)); const encode = Array.from(args).reverse().reduce((acc, i2) => acc ? wrap(acc, i2.encode) : i2.encode, void 0); const decode2 = args.reduce((acc, i2) => acc ? wrap(acc, i2.decode) : i2.decode, void 0); return { encode, decode: decode2 }; } function alphabet(alphabet2) { return { encode: (digits) => { if (!Array.isArray(digits) || digits.length && typeof digits[0] !== "number") throw new Error("alphabet.encode input should be an array of numbers"); return digits.map((i2) => { assertNumber(i2); if (i2 < 0 || i2 >= alphabet2.length) throw new Error(`Digit index outside alphabet: ${i2} (alphabet: ${alphabet2.length})`); return alphabet2[i2]; }); }, decode: (input) => { if (!Array.isArray(input) || input.length && typeof input[0] !== "string") throw new Error("alphabet.decode input should be array of strings"); return input.map((letter) => { if (typeof letter !== "string") throw new Error(`alphabet.decode: not string element=${letter}`); const index = alphabet2.indexOf(letter); if (index === -1) throw new Error(`Unknown letter: "${letter}". Allowed: ${alphabet2}`); return index; }); } }; } function join(separator = "") { if (typeof separator !== "string") throw new Error("join separator should be string"); return { encode: (from) => { if (!Array.isArray(from) || from.length && typeof from[0] !== "string") throw new Error("join.encode input should be array of strings"); for (let i2 of from) if (typeof i2 !== "string") throw new Error(`join.encode: non-string input=${i2}`); return from.join(separator); }, decode: (to) => { if (typeof to !== "string") throw new Error("join.decode input should be string"); return to.split(separator); } }; } function padding(bits, chr = "=") { assertNumber(bits); if (typeof chr !== "string") throw new Error("padding chr should be string"); return { encode(data) { if (!Array.isArray(data) || data.length && typeof data[0] !== "string") throw new Error("padding.encode input should be array of strings"); for (let i2 of data) if (typeof i2 !== "string") throw new Error(`padding.encode: non-string input=${i2}`); while (data.length * bits % 8) data.push(chr); return data; }, decode(input) { if (!Array.isArray(input) || input.length && typeof input[0] !== "string") throw new Error("padding.encode input should be array of strings"); for (let i2 of input) if (typeof i2 !== "string") throw new Error(`padding.decode: non-string input=${i2}`); let end = input.length; if (end * bits % 8) throw new Error("Invalid padding: string should have whole number of bytes"); for (; end > 0 && input[end - 1] === chr; end--) { if (!((end - 1) * bits % 8)) throw new Error("Invalid padding: string has too much padding"); } return input.slice(0, end); } }; } function normalize(fn) { if (typeof fn !== "function") throw new Error("normalize fn should be function"); return { encode: (from) => from, decode: (to) => fn(to) }; } function convertRadix(data, from, to) { if (from < 2) throw new Error(`convertRadix: wrong from=${from}, base cannot be less than 2`); if (to < 2) throw new Error(`convertRadix: wrong to=${to}, base cannot be less than 2`); if (!Array.isArray(data)) throw new Error("convertRadix: data should be array"); if (!data.length) return []; let pos = 0; const res = []; const digits = Array.from(data); digits.forEach((d) => { assertNumber(d); if (d < 0 || d >= from) throw new Error(`Wrong integer: ${d}`); }); while (true) { let carry = 0; let done = true; for (let i2 = pos; i2 < digits.length; i2++) { const digit = digits[i2]; const digitBase = from * carry + digit; if (!Number.isSafeInteger(digitBase) || from * carry / from !== carry || digitBase - digit !== from * carry) { throw new Error("convertRadix: carry overflow"); } carry = digitBase % to; digits[i2] = Math.floor(digitBase / to); if (!Number.isSafeInteger(digits[i2]) || digits[i2] * to + carry !== digitBase) throw new Error("convertRadix: carry overflow"); if (!done) continue; else if (!digits[i2]) pos = i2; else done = false; } res.push(carry); if (done) break; } for (let i2 = 0; i2 < data.length - 1 && data[i2] === 0; i2++) res.push(0); return res.reverse(); } var gcd = (a, b) => !b ? a : gcd(b, a % b); var radix2carry = (from, to) => from + (to - gcd(from, to)); function convertRadix2(data, from, to, padding2) { if (!Array.isArray(data)) throw new Error("convertRadix2: data should be array"); if (from <= 0 || from > 32) throw new Error(`convertRadix2: wrong from=${from}`); if (to <= 0 || to > 32) throw new Error(`convertRadix2: wrong to=${to}`); if (radix2carry(from, to) > 32) { throw new Error(`convertRadix2: carry overflow from=${from} to=${to} carryBits=${radix2carry(from, to)}`); } let carry = 0; let pos = 0; const mask = 2 ** to - 1; const res = []; for (const n of data) { assertNumber(n); if (n >= 2 ** from) throw new Error(`convertRadix2: invalid data word=${n} from=${from}`); carry = carry << from | n; if (pos + from > 32) throw new Error(`convertRadix2: carry overflow pos=${pos} from=${from}`); pos += from; for (; pos >= to; pos -= to) res.push((carry >> pos - to & mask) >>> 0); carry &= 2 ** pos - 1; } carry = carry << to - pos & mask; if (!padding2 && pos >= from) throw new Error("Excess padding"); if (!padding2 && carry) throw new Error(`Non-zero padding: ${carry}`); if (padding2 && pos > 0) res.push(carry >>> 0); return res; } function radix(num) { assertNumber(num); return { encode: (bytes3) => { if (!(bytes3 instanceof Uint8Array)) throw new Error("radix.encode input should be Uint8Array"); return convertRadix(Array.from(bytes3), 2 ** 8, num); }, decode: (digits) => { if (!Array.isArray(digits) || digits.length && typeof digits[0] !== "number") throw new Error("radix.decode input should be array of strings"); return Uint8Array.from(convertRadix(digits, num, 2 ** 8)); } }; } function radix2(bits, revPadding = false) { assertNumber(bits); if (bits <= 0 || bits > 32) throw new Error("radix2: bits should be in (0..32]"); if (radix2carry(8, bits) > 32 || radix2carry(bits, 8) > 32) throw new Error("radix2: carry overflow"); return { encode: (bytes3) => { if (!(bytes3 instanceof Uint8Array)) throw new Error("radix2.encode input should be Uint8Array"); return convertRadix2(Array.from(bytes3), 8, bits, !revPadding); }, decode: (digits) => { if (!Array.isArray(digits) || digits.length && typeof digits[0] !== "number") throw new Error("radix2.decode input should be array of strings"); return Uint8Array.from(convertRadix2(digits, bits, 8, revPadding)); } }; } function unsafeWrapper(fn) { if (typeof fn !== "function") throw new Error("unsafeWrapper fn should be function"); return function(...args) { try { return fn.apply(null, args); } catch (e) { } }; } var base16 = chain(radix2(4), alphabet("0123456789ABCDEF"), join("")); var base32 = chain(radix2(5), alphabet("ABCDEFGHIJKLMNOPQRSTUVWXYZ234567"), padding(5), join("")); var base32hex = chain(radix2(5), alphabet("0123456789ABCDEFGHIJKLMNOPQRSTUV"), padding(5), join("")); var base32crockford = chain(radix2(5), alphabet("0123456789ABCDEFGHJKMNPQRSTVWXYZ"), join(""), normalize((s) => s.toUpperCase().replace(/O/g, "0").replace(/[IL]/g, "1"))); var base64 = chain(radix2(6), alphabet("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/"), padding(6), join("")); var base64url = chain(radix2(6), alphabet("ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_"), padding(6), join("")); var genBase58 = (abc) => chain(radix(58), alphabet(abc), join("")); var base58 = genBase58("123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz"); var base58flickr = genBase58("123456789abcdefghijkmnopqrstuvwxyzABCDEFGHJKLMNPQRSTUVWXYZ"); var base58xrp = genBase58("rpshnaf39wBUDNEGHJKLM4PQRST7VWXYZ2bcdeCg65jkm8oFqi1tuvAxyz"); var XMR_BLOCK_LEN = [0, 2, 3, 5, 6, 7, 9, 10, 11]; var base58xmr = { encode(data) { let res = ""; for (let i2 = 0; i2 < data.length; i2 += 8) { const block = data.subarray(i2, i2 + 8); res += base58.encode(block).padStart(XMR_BLOCK_LEN[block.length], "1"); } return res; }, decode(str) { let res = []; for (let i2 = 0; i2 < str.length; i2 += 11) { const slice = str.slice(i2, i2 + 11); const blockLen = XMR_BLOCK_LEN.indexOf(slice.length); const block = base58.decode(slice); for (let j = 0; j < block.length - blockLen; j++) { if (block[j] !== 0) throw new Error("base58xmr: wrong padding"); } res = res.concat(Array.from(block.slice(block.length - blockLen))); } return Uint8Array.from(res); } }; var BECH_ALPHABET = chain(alphabet("qpzry9x8gf2tvdw0s3jn54khce6mua7l"), join("")); var POLYMOD_GENERATORS = [996825010, 642813549, 513874426, 1027748829, 705979059]; function bech32Polymod(pre) { const b = pre >> 25; let chk = (pre & 33554431) << 5; for (let i2 = 0; i2 < POLYMOD_GENERATORS.length; i2++) { if ((b >> i2 & 1) === 1) chk ^= POLYMOD_GENERATORS[i2]; } return chk; } function bechChecksum(prefix, words, encodingConst = 1) { const len = prefix.length; let chk = 1; for (let i2 = 0; i2 < len; i2++) { const c = prefix.charCodeAt(i2); if (c < 33 || c > 126) throw new Error(`Invalid prefix (${prefix})`); chk = bech32Polymod(chk) ^ c >> 5; } chk = bech32Polymod(chk); for (let i2 = 0; i2 < len; i2++) chk = bech32Polymod(chk) ^ prefix.charCodeAt(i2) & 31; for (let v of words) chk = bech32Polymod(chk) ^ v; for (let i2 = 0; i2 < 6; i2++) chk = bech32Polymod(chk); chk ^= encodingConst; return BECH_ALPHABET.encode(convertRadix2([chk % 2 ** 30], 30, 5, false)); } function genBech32(encoding) { const ENCODING_CONST = encoding === "bech32" ? 1 : 734539939; const _words = radix2(5); const fromWords = _words.decode; const toWords = _words.encode; const fromWordsUnsafe = unsafeWrapper(fromWords); function encode(prefix, words, limit = 90) { if (typeof prefix !== "string") throw new Error(`bech32.encode prefix should be string, not ${typeof prefix}`); if (!Array.isArray(words) || words.length && typeof words[0] !== "number") throw new Error(`bech32.encode words should be array of numbers, not ${typeof words}`); const actualLength = prefix.length + 7 + words.length; if (limit !== false && actualLength > limit) throw new TypeError(`Length ${actualLength} exceeds limit ${limit}`); prefix = prefix.toLowerCase(); return `${prefix}1${BECH_ALPHABET.encode(words)}${bechChecksum(prefix, words, ENCODING_CONST)}`; } function decode2(str, limit = 90) { if (typeof str !== "string") throw new Error(`bech32.decode input should be string, not ${typeof str}`); if (str.length < 8 || limit !== false && str.length > limit) throw new TypeError(`Wrong string length: ${str.length} (${str}). Expected (8..${limit})`); const lowered = str.toLowerCase(); if (str !== lowered && str !== str.toUpperCase()) throw new Error(`String must be lowercase or uppercase`); str = lowered; const sepIndex = str.lastIndexOf("1"); if (sepIndex === 0 || sepIndex === -1) throw new Error(`Letter "1" must be present between prefix and data only`); const prefix = str.slice(0, sepIndex); const _words2 = str.slice(sepIndex + 1); if (_words2.length < 6) throw new Error("Data must be at least 6 characters long"); const words = BECH_ALPHABET.decode(_words2).slice(0, -6); const sum = bechChecksum(prefix, words, ENCODING_CONST); if (!_words2.endsWith(sum)) throw new Error(`Invalid checksum in ${str}: expected "${sum}"`); return { prefix, words }; } const decodeUnsafe = unsafeWrapper(decode2); function decodeToBytes(str) { const { prefix, words } = decode2(str, false); return { prefix, words, bytes: fromWords(words) }; } return { encode, decode: decode2, decodeToBytes, decodeUnsafe, fromWords, fromWordsUnsafe, toWords }; } var bech32 = genBech32("bech32"); var bech32m = genBech32("bech32m"); var utf8 = { encode: (data) => new TextDecoder().decode(data), decode: (str) => new TextEncoder().encode(str) }; var hex = chain(radix2(4), alphabet("0123456789abcdef"), join(""), normalize((s) => { if (typeof s !== "string" || s.length % 2) throw new TypeError(`hex.decode: expected string, got ${typeof s} with length ${s.length}`); return s.toLowerCase(); })); var CODERS = { utf8, hex, base16, base32, base64, base64url, base58, base58xmr }; var coderTypeError = `Invalid encoding type. Available types: ${Object.keys(CODERS).join(", ")}`; // node_modules/nostr-tools/lib/esm/nip19.js var utf8Decoder = new TextDecoder("utf-8"); var utf8Encoder = new TextEncoder(); var Bech32MaxSize = 5e3; function decode(nip19) { let { prefix, words } = bech32.decode(nip19, Bech32MaxSize); let data = new Uint8Array(bech32.fromWords(words)); switch (prefix) { case "nprofile": { let tlv = parseTLV(data); if (!tlv[0]?.[0]) throw new Error("missing TLV 0 for nprofile"); if (tlv[0][0].length !== 32) throw new Error("TLV 0 should be 32 bytes"); return { type: "nprofile", data: { pubkey: bytesToHex(tlv[0][0]), relays: tlv[1] ? tlv[1].map((d) => utf8Decoder.decode(d)) : [] } }; } case "nevent": { let tlv = parseTLV(data); if (!tlv[0]?.[0]) throw new Error("missing TLV 0 for nevent"); if (tlv[0][0].length !== 32) throw new Error("TLV 0 should be 32 bytes"); if (tlv[2] && tlv[2][0].length !== 32) throw new Error("TLV 2 should be 32 bytes"); if (tlv[3] && tlv[3][0].length !== 4) throw new Error("TLV 3 should be 4 bytes"); return { type: "nevent", data: { id: bytesToHex(tlv[0][0]), relays: tlv[1] ? tlv[1].map((d) => utf8Decoder.decode(d)) : [], author: tlv[2]?.[0] ? bytesToHex(tlv[2][0]) : void 0, kind: tlv[3]?.[0] ? parseInt(bytesToHex(tlv[3][0]), 16) : void 0 } }; } case "naddr": { let tlv = parseTLV(data); if (!tlv[0]?.[0]) throw new Error("missing TLV 0 for naddr"); if (!tlv[2]?.[0]) throw new Error("missing TLV 2 for naddr"); if (tlv[2][0].length !== 32) throw new Error("TLV 2 should be 32 bytes"); if (!tlv[3]?.[0]) throw new Error("missing TLV 3 for naddr"); if (tlv[3][0].length !== 4) throw new Error("TLV 3 should be 4 bytes"); return { type: "naddr", data: { identifier: utf8Decoder.decode(tlv[0][0]), pubkey: bytesToHex(tlv[2][0]), kind: parseInt(bytesToHex(tlv[3][0]), 16), relays: tlv[1] ? tlv[1].map((d) => utf8Decoder.decode(d)) : [] } }; } case "nrelay": { let tlv = parseTLV(data); if (!tlv[0]?.[0]) throw new Error("missing TLV 0 for nrelay"); return { type: "nrelay", data: utf8Decoder.decode(tlv[0][0]) }; } case "nsec": return { type: prefix, data }; case "npub": case "note": return { type: prefix, data: bytesToHex(data) }; default: throw new Error(`unknown prefix ${prefix}`); } } function parseTLV(data) { let result = {}; let rest = data; while (rest.length > 0) { let t = rest[0]; let l = rest[1]; let v = rest.slice(2, 2 + l); rest = rest.slice(2 + l); if (v.length < l) throw new Error(`not enough data to read on TLV ${t}`); result[t] = result[t] || []; result[t].push(v); } return result; } function npubEncode(hex2) { return encodeBytes("npub", hexToBytes(hex2)); } function encodeBech32(prefix, data) { let words = bech32.toWords(data); return bech32.encode(prefix, words, Bech32MaxSize); } function encodeBytes(prefix, bytes3) { return encodeBech32(prefix, bytes3); } // node_modules/@noble/curves/node_modules/@noble/hashes/esm/_assert.js function number(n) { if (!Number.isSafeInteger(n) || n < 0) throw new Error(`Wrong positive integer: ${n}`); } function bytes(b, ...lengths) { if (!(b instanceof Uint8Array)) throw new Error("Expected Uint8Array"); if (lengths.length > 0 && !lengths.includes(b.length)) throw new Error(`Expected Uint8Array of length ${lengths}, not of length=${b.length}`); } function hash(hash3) { if (typeof hash3 !== "function" || typeof hash3.create !== "function") throw new Error("Hash should be wrapped by utils.wrapConstructor"); number(hash3.outputLen); number(hash3.blockLen); } function exists(instance, checkFinished = true) { if (instance.destroyed) throw new Error("Hash instance has been destroyed"); if (checkFinished && instance.finished) throw new Error("Hash#digest() has already been called"); } function output(out, instance) { bytes(out); const min = instance.outputLen; if (out.length < min) { throw new Error(`digestInto() expects output buffer of length at least ${min}`); } } // node_modules/@noble/curves/node_modules/@noble/hashes/esm/crypto.js var crypto2 = typeof globalThis === "object" && "crypto" in globalThis ? globalThis.crypto : void 0; // node_modules/@noble/curves/node_modules/@noble/hashes/esm/utils.js var u8a2 = (a) => a instanceof Uint8Array; var createView2 = (arr) => new DataView(arr.buffer, arr.byteOffset, arr.byteLength); var rotr2 = (word, shift) => word << 32 - shift | word >>> shift; var isLE2 = new Uint8Array(new Uint32Array([287454020]).buffer)[0] === 68; if (!isLE2) throw new Error("Non little-endian hardware is not supported"); function utf8ToBytes2(str) { if (typeof str !== "string") throw new Error(`utf8ToBytes expected string, got ${typeof str}`); return new Uint8Array(new TextEncoder().encode(str)); } function toBytes2(data) { if (typeof data === "string") data = utf8ToBytes2(data); if (!u8a2(data)) throw new Error(`expected Uint8Array, got ${typeof data}`); return data; } function concatBytes2(...arrays) { const r = new Uint8Array(arrays.reduce((sum, a) => sum + a.length, 0)); let pad = 0; arrays.forEach((a) => { if (!u8a2(a)) throw new Error("Uint8Array expected"); r.set(a, pad); pad += a.length; }); return r; } var Hash2 = class { clone() { return this._cloneInto(); } }; var toStr = {}.toString; function wrapConstructor2(hashCons) { const hashC = (msg) => hashCons().update(toBytes2(msg)).digest(); const tmp = hashCons(); hashC.outputLen = tmp.outputLen; hashC.blockLen = tmp.blockLen; hashC.create = () => hashCons(); return hashC; } function randomBytes(bytesLength = 32) { if (crypto2 && typeof crypto2.getRandomValues === "function") { return crypto2.getRandomValues(new Uint8Array(bytesLength)); } throw new Error("crypto.getRandomValues must be defined"); } // node_modules/@noble/curves/node_modules/@noble/hashes/esm/_sha2.js function setBigUint64(view, byteOffset, value, isLE3) { if (typeof view.setBigUint64 === "function") return view.setBigUint64(byteOffset, value, isLE3); const _32n = BigInt(32); const _u32_max = BigInt(4294967295); const wh = Number(value >> _32n & _u32_max); const wl = Number(value & _u32_max); const h = isLE3 ? 4 : 0; const l = isLE3 ? 0 : 4; view.setUint32(byteOffset + h, wh, isLE3); view.setUint32(byteOffset + l, wl, isLE3); } var SHA2 = class extends Hash2 { constructor(blockLen, outputLen, padOffset, isLE3) { super(); this.blockLen = blockLen; this.outputLen = outputLen; this.padOffset = padOffset; this.isLE = isLE3; this.finished = false; this.length = 0; this.pos = 0; this.destroyed = false; this.buffer = new Uint8Array(blockLen); this.view = createView2(this.buffer); } update(data) { exists(this); const { view, buffer, blockLen } = this; data = toBytes2(data); const len = data.length; for (let pos = 0; pos < len; ) { const take = Math.min(blockLen - this.pos, len - pos); if (take === blockLen) { const dataView = createView2(data); for (; blockLen <= len - pos; pos += blockLen) this.process(dataView, pos); continue; } buffer.set(data.subarray(pos, pos + take), this.pos); this.pos += take; pos += take; if (this.pos === blockLen) { this.process(view, 0); this.pos = 0; } } this.length += data.length; this.roundClean(); return this; } digestInto(out) { exists(this); output(out, this); this.finished = true; const { buffer, view, blockLen, isLE: isLE3 } = this; let { pos } = this; buffer[pos++] = 128; this.buffer.subarray(pos).fill(0); if (this.padOffset > blockLen - pos) { this.process(view, 0); pos = 0; } for (let i2 = pos; i2 < blockLen; i2++) buffer[i2] = 0; setBigUint64(view, blockLen - 8, BigInt(this.length * 8), isLE3); this.process(view, 0); const oview = createView2(out); const len = this.outputLen; if (len % 4) throw new Error("_sha2: outputLen should be aligned to 32bit"); const outLen = len / 4; const state = this.get(); if (outLen > state.length) throw new Error("_sha2: outputLen bigger than state"); for (let i2 = 0; i2 < outLen; i2++) oview.setUint32(4 * i2, state[i2], isLE3); } digest() { const { buffer, outputLen } = this; this.digestInto(buffer); const res = buffer.slice(0, outputLen); this.destroy(); return res; } _cloneInto(to) { to || (to = new this.constructor()); to.set(...this.get()); const { blockLen, buffer, length, finished, destroyed, pos } = this; to.length = length; to.pos = pos; to.finished = finished; to.destroyed = destroyed; if (length % blockLen) to.buffer.set(buffer); return to; } }; // node_modules/@noble/curves/node_modules/@noble/hashes/esm/sha256.js var Chi = (a, b, c) => a & b ^ ~a & c; var Maj = (a, b, c) => a & b ^ a & c ^ b & c; var SHA256_K = /* @__PURE__ */ new Uint32Array([ 1116352408, 1899447441, 3049323471, 3921009573, 961987163, 1508970993, 2453635748, 2870763221, 3624381080, 310598401, 607225278, 1426881987, 1925078388, 2162078206, 2614888103, 3248222580, 3835390401, 4022224774, 264347078, 604807628, 770255983, 1249150122, 1555081692, 1996064986, 2554220882, 2821834349, 2952996808, 3210313671, 3336571891, 3584528711, 113926993, 338241895, 666307205, 773529912, 1294757372, 1396182291, 1695183700, 1986661051, 2177026350, 2456956037, 2730485921, 2820302411, 3259730800, 3345764771, 3516065817, 3600352804, 4094571909, 275423344, 430227734, 506948616, 659060556, 883997877, 958139571, 1322822218, 1537002063, 1747873779, 1955562222, 2024104815, 2227730452, 2361852424, 2428436474, 2756734187, 3204031479, 3329325298 ]); var IV = /* @__PURE__ */ new Uint32Array([ 1779033703, 3144134277, 1013904242, 2773480762, 1359893119, 2600822924, 528734635, 1541459225 ]); var SHA256_W = /* @__PURE__ */ new Uint32Array(64); var SHA256 = class extends SHA2 { constructor() { super(64, 32, 8, false); this.A = IV[0] | 0; this.B = IV[1] | 0; this.C = IV[2] | 0; this.D = IV[3] | 0; this.E = IV[4] | 0; this.F = IV[5] | 0; this.G = IV[6] | 0; this.H = IV[7] | 0; } get() { const { A, B, C, D, E, F, G, H } = this; return [A, B, C, D, E, F, G, H]; } set(A, B, C, D, E, F, G, H) { this.A = A | 0; this.B = B | 0; this.C = C | 0; this.D = D | 0; this.E = E | 0; this.F = F | 0; this.G = G | 0; this.H = H | 0; } process(view, offset) { for (let i2 = 0; i2 < 16; i2++, offset += 4) SHA256_W[i2] = view.getUint32(offset, false); for (let i2 = 16; i2 < 64; i2++) { const W15 = SHA256_W[i2 - 15]; const W2 = SHA256_W[i2 - 2]; const s0 = rotr2(W15, 7) ^ rotr2(W15, 18) ^ W15 >>> 3; const s1 = rotr2(W2, 17) ^ rotr2(W2, 19) ^ W2 >>> 10; SHA256_W[i2] = s1 + SHA256_W[i2 - 7] + s0 + SHA256_W[i2 - 16] | 0; } let { A, B, C, D, E, F, G, H } = this; for (let i2 = 0; i2 < 64; i2++) { const sigma1 = rotr2(E, 6) ^ rotr2(E, 11) ^ rotr2(E, 25); const T1 = H + sigma1 + Chi(E, F, G) + SHA256_K[i2] + SHA256_W[i2] | 0; const sigma0 = rotr2(A, 2) ^ rotr2(A, 13) ^ rotr2(A, 22); const T2 = sigma0 + Maj(A, B, C) | 0; H = G; G = F; F = E; E = D + T1 | 0; D = C; C = B; B = A; A = T1 + T2 | 0; } A = A + this.A | 0; B = B + this.B | 0; C = C + this.C | 0; D = D + this.D | 0; E = E + this.E | 0; F = F + this.F | 0; G = G + this.G | 0; H = H + this.H | 0; this.set(A, B, C, D, E, F, G, H); } roundClean() { SHA256_W.fill(0); } destroy() { this.set(0, 0, 0, 0, 0, 0, 0, 0); this.buffer.fill(0); } }; var sha256 = /* @__PURE__ */ wrapConstructor2(() => new SHA256()); // node_modules/@noble/curves/esm/abstract/utils.js var utils_exports = {}; __export(utils_exports, { bitGet: () => bitGet, bitLen: () => bitLen, bitMask: () => bitMask, bitSet: () => bitSet, bytesToHex: () => bytesToHex2, bytesToNumberBE: () => bytesToNumberBE, bytesToNumberLE: () => bytesToNumberLE, concatBytes: () => concatBytes3, createHmacDrbg: () => createHmacDrbg, ensureBytes: () => ensureBytes, equalBytes: () => equalBytes, hexToBytes: () => hexToBytes2, hexToNumber: () => hexToNumber, numberToBytesBE: () => numberToBytesBE, numberToBytesLE: () => numberToBytesLE, numberToHexUnpadded: () => numberToHexUnpadded, numberToVarBytesBE: () => numberToVarBytesBE, utf8ToBytes: () => utf8ToBytes3, validateObject: () => validateObject }); var _0n = BigInt(0); var _1n = BigInt(1); var _2n = BigInt(2); var u8a3 = (a) => a instanceof Uint8Array; var hexes2 = /* @__PURE__ */ Array.from({ length: 256 }, (_, i2) => i2.toString(16).padStart(2, "0")); function bytesToHex2(bytes3) { if (!u8a3(bytes3)) throw new Error("Uint8Array expected"); let hex2 = ""; for (let i2 = 0; i2 < bytes3.length; i2++) { hex2 += hexes2[bytes3[i2]]; } return hex2; } function numberToHexUnpadded(num) { const hex2 = num.toString(16); return hex2.length & 1 ? `0${hex2}` : hex2; } function hexToNumber(hex2) { if (typeof hex2 !== "string") throw new Error("hex string expected, got " + typeof hex2); return BigInt(hex2 === "" ? "0" : `0x${hex2}`); } function hexToBytes2(hex2) { if (typeof hex2 !== "string") throw new Error("hex string expected, got " + typeof hex2); const len = hex2.length; if (len % 2) throw new Error("padded hex string expected, got unpadded hex of length " + len); const array = new Uint8Array(len / 2); for (let i2 = 0; i2 < array.length; i2++) { const j = i2 * 2; const hexByte = hex2.slice(j, j + 2); const byte = Number.parseInt(hexByte, 16); if (Number.isNaN(byte) || byte < 0) throw new Error("Invalid byte sequence"); array[i2] = byte; } return array; } function bytesToNumberBE(bytes3) { return hexToNumber(bytesToHex2(bytes3)); } function bytesToNumberLE(bytes3) { if (!u8a3(bytes3)) throw new Error("Uint8Array expected"); return hexToNumber(bytesToHex2(Uint8Array.from(bytes3).reverse())); } function numberToBytesBE(n, len) { return hexToBytes2(n.toString(16).padStart(len * 2, "0")); } function numberToBytesLE(n, len) { return numberToBytesBE(n, len).reverse(); } function numberToVarBytesBE(n) { return hexToBytes2(numberToHexUnpadded(n)); } function ensureBytes(title, hex2, expectedLength) { let res; if (typeof hex2 === "string") { try { res = hexToBytes2(hex2); } catch (e) { throw new Error(`${title} must be valid hex string, got "${hex2}". Cause: ${e}`); } } else if (u8a3(hex2)) { res = Uint8Array.from(hex2); } else { throw new Error(`${title} must be hex string or Uint8Array`); } const len = res.length; if (typeof expectedLength === "number" && len !== expectedLength) throw new Error(`${title} expected ${expectedLength} bytes, got ${len}`); return res; } function concatBytes3(...arrays) { const r = new Uint8Array(arrays.reduce((sum, a) => sum + a.length, 0)); let pad = 0; arrays.forEach((a) => { if (!u8a3(a)) throw new Error("Uint8Array expected"); r.set(a, pad); pad += a.length; }); return r; } function equalBytes(b1, b2) { if (b1.length !== b2.length) return false; for (let i2 = 0; i2 < b1.length; i2++) if (b1[i2] !== b2[i2]) return false; return true; } function utf8ToBytes3(str) { if (typeof str !== "string") throw new Error(`utf8ToBytes expected string, got ${typeof str}`); return new Uint8Array(new TextEncoder().encode(str)); } function bitLen(n) { let len; for (len = 0; n > _0n; n >>= _1n, len += 1) ; return len; } function bitGet(n, pos) { return n >> BigInt(pos) & _1n; } var bitSet = (n, pos, value) => { return n | (value ? _1n : _0n) << BigInt(pos); }; var bitMask = (n) => (_2n << BigInt(n - 1)) - _1n; var u8n = (data) => new Uint8Array(data); var u8fr = (arr) => Uint8Array.from(arr); function createHmacDrbg(hashLen, qByteLen, hmacFn) { if (typeof hashLen !== "number" || hashLen < 2) throw new Error("hashLen must be a number"); if (typeof qByteLen !== "number" || qByteLen < 2) throw new Error("qByteLen must be a number"); if (typeof hmacFn !== "function") throw new Error("hmacFn must be a function"); let v = u8n(hashLen); let k = u8n(hashLen); let i2 = 0; const reset = () => { v.fill(1); k.fill(0); i2 = 0; }; const h = (...b) => hmacFn(k, v, ...b); const reseed = (seed = u8n()) => { k = h(u8fr([0]), seed); v = h(); if (seed.length === 0) return; k = h(u8fr([1]), seed); v = h(); }; const gen = () => { if (i2++ >= 1e3) throw new Error("drbg: tried 1000 values"); let len = 0; const out = []; while (len < qByteLen) { v = h(); const sl = v.slice(); out.push(sl); len += v.length; } return concatBytes3(...out); }; const genUntil = (seed, pred) => { reset(); reseed(seed); let res = void 0; while (!(res = pred(gen()))) reseed(); reset(); return res; }; return genUntil; } var validatorFns = { bigint: (val) => typeof val === "bigint", function: (val) => typeof val === "function", boolean: (val) => typeof val === "boolean", string: (val) => typeof val === "string", stringOrUint8Array: (val) => typeof val === "string" || val instanceof Uint8Array, isSafeInteger: (val) => Number.isSafeInteger(val), array: (val) => Array.isArray(val), field: (val, object) => object.Fp.isValid(val), hash: (val) => typeof val === "function" && Number.isSafeInteger(val.outputLen) }; function validateObject(object, validators, optValidators = {}) { const checkField = (fieldName, type, isOptional) => { const checkVal = validatorFns[type]; if (typeof checkVal !== "function") throw new Error(`Invalid validator "${type}", expected function`); const val = object[fieldName]; if (isOptional && val === void 0) return; if (!checkVal(val, object)) { throw new Error(`Invalid param ${String(fieldName)}=${val} (${typeof val}), expected ${type}`); } }; for (const [fieldName, type] of Object.entries(validators)) checkField(fieldName, type, false); for (const [fieldName, type] of Object.entries(optValidators)) checkField(fieldName, type, true); return object; } // node_modules/@noble/curves/esm/abstract/modular.js var _0n2 = BigInt(0); var _1n2 = BigInt(1); var _2n2 = BigInt(2); var _3n = BigInt(3); var _4n = BigInt(4); var _5n = BigInt(5); var _8n = BigInt(8); var _9n = BigInt(9); var _16n = BigInt(16); function mod(a, b) { const result = a % b; return result >= _0n2 ? result : b + result; } function pow(num, power, modulo) { if (modulo <= _0n2 || power < _0n2) throw new Error("Expected power/modulo > 0"); if (modulo === _1n2) return _0n2; let res = _1n2; while (power > _0n2) { if (power & _1n2) res = res * num % modulo; num = num * num % modulo; power >>= _1n2; } return res; } function pow2(x, power, modulo) { let res = x; while (power-- > _0n2) { res *= res; res %= modulo; } return res; } function invert(number3, modulo) { if (number3 === _0n2 || modulo <= _0n2) { throw new Error(`invert: expected positive integers, got n=${number3} mod=${modulo}`); } let a = mod(number3, modulo); let b = modulo; let x = _0n2, y = _1n2, u = _1n2, v = _0n2; while (a !== _0n2) { const q = b / a; const r = b % a; const m = x - u * q; const n = y - v * q; b = a, a = r, x = u, y = v, u = m, v = n; } const gcd2 = b; if (gcd2 !== _1n2) throw new Error("invert: does not exist"); return mod(x, modulo); } function tonelliShanks(P) { const legendreC = (P - _1n2) / _2n2; let Q, S, Z; for (Q = P - _1n2, S = 0; Q % _2n2 === _0n2; Q /= _2n2, S++) ; for (Z = _2n2; Z < P && pow(Z, legendreC, P) !== P - _1n2; Z++) ; if (S === 1) { const p1div4 = (P + _1n2) / _4n; return function tonelliFast(Fp2, n) { const root = Fp2.pow(n, p1div4); if (!Fp2.eql(Fp2.sqr(root), n)) throw new Error("Cannot find square root"); return root; }; } const Q1div2 = (Q + _1n2) / _2n2; return function tonelliSlow(Fp2, n) { if (Fp2.pow(n, legendreC) === Fp2.neg(Fp2.ONE)) throw new Error("Cannot find square root"); let r = S; let g = Fp2.pow(Fp2.mul(Fp2.ONE, Z), Q); let x = Fp2.pow(n, Q1div2); let b = Fp2.pow(n, Q); while (!Fp2.eql(b, Fp2.ONE)) { if (Fp2.eql(b, Fp2.ZERO)) return Fp2.ZERO; let m = 1; for (let t2 = Fp2.sqr(b); m < r; m++) { if (Fp2.eql(t2, Fp2.ONE)) break; t2 = Fp2.sqr(t2); } const ge2 = Fp2.pow(g, _1n2 << BigInt(r - m - 1)); g = Fp2.sqr(ge2); x = Fp2.mul(x, ge2); b = Fp2.mul(b, g); r = m; } return x; }; } function FpSqrt(P) { if (P % _4n === _3n) { const p1div4 = (P + _1n2) / _4n; return function sqrt3mod4(Fp2, n) { const root = Fp2.pow(n, p1div4); if (!Fp2.eql(Fp2.sqr(root), n)) throw new Error("Cannot find square root"); return root; }; } if (P % _8n === _5n) { const c1 = (P - _5n) / _8n; return function sqrt5mod8(Fp2, n) { const n2 = Fp2.mul(n, _2n2); const v = Fp2.pow(n2, c1); const nv = Fp2.mul(n, v); const i2 = Fp2.mul(Fp2.mul(nv, _2n2), v); const root = Fp2.mul(nv, Fp2.sub(i2, Fp2.ONE)); if (!Fp2.eql(Fp2.sqr(root), n)) throw new Error("Cannot find square root"); return root; }; } if (P % _16n === _9n) { } return tonelliShanks(P); } var FIELD_FIELDS = [ "create", "isValid", "is0", "neg", "inv", "sqrt", "sqr", "eql", "add", "sub", "mul", "pow", "div", "addN", "subN", "mulN", "sqrN" ]; function validateField(field) { const initial = { ORDER: "bigint", MASK: "bigint", BYTES: "isSafeInteger", BITS: "isSafeInteger" }; const opts = FIELD_FIELDS.reduce((map, val) => { map[val] = "function"; return map; }, initial); return validateObject(field, opts); } function FpPow(f, num, power) { if (power < _0n2) throw new Error("Expected power > 0"); if (power === _0n2) return f.ONE; if (power === _1n2) return num; let p = f.ONE; let d = num; while (power > _0n2) { if (power & _1n2) p = f.mul(p, d); d = f.sqr(d); power >>= _1n2; } return p; } function FpInvertBatch(f, nums) { const tmp = new Array(nums.length); const lastMultiplied = nums.reduce((acc, num, i2) => { if (f.is0(num)) return acc; tmp[i2] = acc; return f.mul(acc, num); }, f.ONE); const inverted = f.inv(lastMultiplied); nums.reduceRight((acc, num, i2) => { if (f.is0(num)) return acc; tmp[i2] = f.mul(acc, tmp[i2]); return f.mul(acc, num); }, inverted); return tmp; } function nLength(n, nBitLength) { const _nBitLength = nBitLength !== void 0 ? nBitLength : n.toString(2).length; const nByteLength = Math.ceil(_nBitLength / 8); return { nBitLength: _nBitLength, nByteLength }; } function Field(ORDER, bitLen2, isLE3 = false, redef = {}) { if (ORDER <= _0n2) throw new Error(`Expected Field ORDER > 0, got ${ORDER}`); const { nBitLength: BITS, nByteLength: BYTES } = nLength(ORDER, bitLen2); if (BYTES > 2048) throw new Error("Field lengths over 2048 bytes are not supported"); const sqrtP = FpSqrt(ORDER); const f = Object.freeze({ ORDER, BITS, BYTES, MASK: bitMask(BITS), ZERO: _0n2, ONE: _1n2, create: (num) => mod(num, ORDER), isValid: (num) => { if (typeof num !== "bigint") throw new Error(`Invalid field element: expected bigint, got ${typeof num}`); return _0n2 <= num && num < ORDER; }, is0: (num) => num === _0n2, isOdd: (num) => (num & _1n2) === _1n2, neg: (num) => mod(-num, ORDER), eql: (lhs, rhs) => lhs === rhs, sqr: (num) => mod(num * num, ORDER), add: (lhs, rhs) => mod(lhs + rhs, ORDER), sub: (lhs, rhs) => mod(lhs - rhs, ORDER), mul: (lhs, rhs) => mod(lhs * rhs, ORDER), pow: (num, power) => FpPow(f, num, power), div: (lhs, rhs) => mod(lhs * invert(rhs, ORDER), ORDER), sqrN: (num) => num * num, addN: (lhs, rhs) => lhs + rhs, subN: (lhs, rhs) => lhs - rhs, mulN: (lhs, rhs) => lhs * rhs, inv: (num) => invert(num, ORDER), sqrt: redef.sqrt || ((n) => sqrtP(f, n)), invertBatch: (lst) => FpInvertBatch(f, lst), cmov: (a, b, c) => c ? b : a, toBytes: (num) => isLE3 ? numberToBytesLE(num, BYTES) : numberToBytesBE(num, BYTES), fromBytes: (bytes3) => { if (bytes3.length !== BYTES) throw new Error(`Fp.fromBytes: expected ${BYTES}, got ${bytes3.length}`); return isLE3 ? bytesToNumberLE(bytes3) : bytesToNumberBE(bytes3); } }); return Object.freeze(f); } function getFieldBytesLength(fieldOrder) { if (typeof fieldOrder !== "bigint") throw new Error("field order must be bigint"); const bitLength = fieldOrder.toString(2).length; return Math.ceil(bitLength / 8); } function getMinHashLength(fieldOrder) { const length = getFieldBytesLength(fieldOrder); return length + Math.ceil(length / 2); } function mapHashToField(key, fieldOrder, isLE3 = false) { const len = key.length; const fieldLen = getFieldBytesLength(fieldOrder); const minLen = getMinHashLength(fieldOrder); if (len < 16 || len < minLen || len > 1024) throw new Error(`expected ${minLen}-1024 bytes of input, got ${len}`); const num = isLE3 ? bytesToNumberBE(key) : bytesToNumberLE(key); const reduced = mod(num, fieldOrder - _1n2) + _1n2; return isLE3 ? numberToBytesLE(reduced, fieldLen) : numberToBytesBE(reduced, fieldLen); } // node_modules/@noble/curves/esm/abstract/curve.js var _0n3 = BigInt(0); var _1n3 = BigInt(1); function wNAF(c, bits) { const constTimeNegate = (condition, item) => { const neg = item.negate(); return condition ? neg : item; }; const opts = (W) => { const windows = Math.ceil(bits / W) + 1; const windowSize = 2 ** (W - 1); return { windows, windowSize }; }; return { constTimeNegate, unsafeLadder(elm, n) { let p = c.ZERO; let d = elm; while (n > _0n3) { if (n & _1n3) p = p.add(d); d = d.double(); n >>= _1n3; } return p; }, precomputeWindow(elm, W) { const { windows, windowSize } = opts(W); const points = []; let p = elm; let base = p; for (let window2 = 0; window2 < windows; window2++) { base = p; points.push(base); for (let i2 = 1; i2 < windowSize; i2++) { base = base.add(p); points.push(base); } p = base.double(); } return points; }, wNAF(W, precomputes, n) { const { windows, windowSize } = opts(W); let p = c.ZERO; let f = c.BASE; const mask = BigInt(2 ** W - 1); const maxNumber = 2 ** W; const shiftBy = BigInt(W); for (let window2 = 0; window2 < windows; window2++) { const offset = window2 * windowSize; let wbits = Number(n & mask); n >>= shiftBy; if (wbits > windowSize) { wbits -= maxNumber; n += _1n3; } const offset1 = offset; const offset2 = offset + Math.abs(wbits) - 1; const cond1 = window2 % 2 !== 0; const cond2 = wbits < 0; if (wbits === 0) { f = f.add(constTimeNegate(cond1, precomputes[offset1])); } else { p = p.add(constTimeNegate(cond2, precomputes[offset2])); } } return { p, f }; }, wNAFCached(P, precomputesMap, n, transform) { const W = P._WINDOW_SIZE || 1; let comp = precomputesMap.get(P); if (!comp) { comp = this.precomputeWindow(P, W); if (W !== 1) { precomputesMap.set(P, transform(comp)); } } return this.wNAF(W, comp, n); } }; } function validateBasic(curve) { validateField(curve.Fp); validateObject(curve, { n: "bigint", h: "bigint", Gx: "field", Gy: "field" }, { nBitLength: "isSafeInteger", nByteLength: "isSafeInteger" }); return Object.freeze({ ...nLength(curve.n, curve.nBitLength), ...curve, ...{ p: curve.Fp.ORDER } }); } // node_modules/@noble/curves/esm/abstract/weierstrass.js function validatePointOpts(curve) { const opts = validateBasic(curve); validateObject(opts, { a: "field", b: "field" }, { allowedPrivateKeyLengths: "array", wrapPrivateKey: "boolean", isTorsionFree: "function", clearCofactor: "function", allowInfinityPoint: "boolean", fromBytes: "function", toBytes: "function" }); const { endo, Fp: Fp2, a } = opts; if (endo) { if (!Fp2.eql(a, Fp2.ZERO)) { throw new Error("Endomorphism can only be defined for Koblitz curves that have a=0"); } if (typeof endo !== "object" || typeof endo.beta !== "bigint" || typeof endo.splitScalar !== "function") { throw new Error("Expected endomorphism with beta: bigint and splitScalar: function"); } } return Object.freeze({ ...opts }); } var { bytesToNumberBE: b2n, hexToBytes: h2b } = utils_exports; var DER = { Err: class DERErr extends Error { constructor(m = "") { super(m); } }, _parseInt(data) { const { Err: E } = DER; if (data.length < 2 || data[0] !== 2) throw new E("Invalid signature integer tag"); const len = data[1]; const res = data.subarray(2, len + 2); if (!len || res.length !== len) throw new E("Invalid signature integer: wrong length"); if (res[0] & 128) throw new E("Invalid signature integer: negative"); if (res[0] === 0 && !(res[1] & 128)) throw new E("Invalid signature integer: unnecessary leading zero"); return { d: b2n(res), l: data.subarray(len + 2) }; }, toSig(hex2) { const { Err: E } = DER; const data = typeof hex2 === "string" ? h2b(hex2) : hex2; if (!(data instanceof Uint8Array)) throw new Error("ui8a expected"); let l = data.length; if (l < 2 || data[0] != 48) throw new E("Invalid signature tag"); if (data[1] !== l - 2) throw new E("Invalid signature: incorrect length"); const { d: r, l: sBytes } = DER._parseInt(data.subarray(2)); const { d: s, l: rBytesLeft } = DER._parseInt(sBytes); if (rBytesLeft.length) throw new E("Invalid signature: left bytes after parsing"); return { r, s }; }, hexFromSig(sig) { const slice = (s2) => Number.parseInt(s2[0], 16) & 8 ? "00" + s2 : s2; const h = (num) => { const hex2 = num.toString(16); return hex2.length & 1 ? `0${hex2}` : hex2; }; const s = slice(h(sig.s)); const r = slice(h(sig.r)); const shl = s.length / 2; const rhl = r.length / 2; const sl = h(shl); const rl = h(rhl); return `30${h(rhl + shl + 4)}02${rl}${r}02${sl}${s}`; } }; var _0n4 = BigInt(0); var _1n4 = BigInt(1); var _2n3 = BigInt(2); var _3n2 = BigInt(3); var _4n2 = BigInt(4); function weierstrassPoints(opts) { const CURVE = validatePointOpts(opts); const { Fp: Fp2 } = CURVE; const toBytes3 = CURVE.toBytes || ((_c, point, _isCompressed) => { const a = point.toAffine(); return concatBytes3(Uint8Array.from([4]), Fp2.toBytes(a.x), Fp2.toBytes(a.y)); }); const fromBytes = CURVE.fromBytes || ((bytes3) => { const tail = bytes3.subarray(1); const x = Fp2.fromBytes(tail.subarray(0, Fp2.BYTES)); const y = Fp2.fromBytes(tail.subarray(Fp2.BYTES, 2 * Fp2.BYTES)); return { x, y }; }); function weierstrassEquation(x) { const { a, b } = CURVE; const x2 = Fp2.sqr(x); const x3 = Fp2.mul(x2, x); return Fp2.add(Fp2.add(x3, Fp2.mul(x, a)), b); } if (!Fp2.eql(Fp2.sqr(CURVE.Gy), weierstrassEquation(CURVE.Gx))) throw new Error("bad generator point: equation left != right"); function isWithinCurveOrder(num) { return typeof num === "bigint" && _0n4 < num && num < CURVE.n; } function assertGE(num) { if (!isWithinCurveOrder(num)) throw new Error("Expected valid bigint: 0 < bigint < curve.n"); } function normPrivateKeyToScalar(key) { const { allowedPrivateKeyLengths: lengths, nByteLength, wrapPrivateKey, n } = CURVE; if (lengths && typeof key !== "bigint") { if (key instanceof Uint8Array) key = bytesToHex2(key); if (typeof key !== "string" || !lengths.includes(key.length)) throw new Error("Invalid key"); key = key.padStart(nByteLength * 2, "0"); } let num; try { num = typeof key === "bigint" ? key : bytesToNumberBE(ensureBytes("private key", key, nByteLength)); } catch (error) { throw new Error(`private key must be ${nByteLength} bytes, hex or bigint, not ${typeof key}`); } if (wrapPrivateKey) num = mod(num, n); assertGE(num); return num; } const pointPrecomputes = /* @__PURE__ */ new Map(); function assertPrjPoint(other) { if (!(other instanceof Point2)) throw new Error("ProjectivePoint expected"); } class Point2 { constructor(px, py, pz) { this.px = px; this.py = py; this.pz = pz; if (px == null || !Fp2.isValid(px)) throw new Error("x required"); if (py == null || !Fp2.isValid(py)) throw new Error("y required"); if (pz == null || !Fp2.isValid(pz)) throw new Error("z required"); } static fromAffine(p) { const { x, y } = p || {}; if (!p || !Fp2.isValid(x) || !Fp2.isValid(y)) throw new Error("invalid affine point"); if (p instanceof Point2) throw new Error("projective point not allowed"); const is0 = (i2) => Fp2.eql(i2, Fp2.ZERO); if (is0(x) && is0(y)) return Point2.ZERO; return new Point2(x, y, Fp2.ONE); } get x() { return this.toAffine().x; } get y() { return this.toAffine().y; } static normalizeZ(points) { const toInv = Fp2.invertBatch(points.map((p) => p.pz)); return points.map((p, i2) => p.toAffine(toInv[i2])).map(Point2.fromAffine); } static fromHex(hex2) { const P = Point2.fromAffine(fromBytes(ensureBytes("pointHex", hex2))); P.assertValidity(); return P; } static fromPrivateKey(privateKey) { return Point2.BASE.multiply(normPrivateKeyToScalar(privateKey)); } _setWindowSize(windowSize) { this._WINDOW_SIZE = windowSize; pointPrecomputes.delete(this); } assertValidity() { if (this.is0()) { if (CURVE.allowInfinityPoint && !Fp2.is0(this.py)) return; throw new Error("bad point: ZERO"); } const { x, y } = this.toAffine(); if (!Fp2.isValid(x) || !Fp2.isValid(y)) throw new Error("bad point: x or y not FE"); const left = Fp2.sqr(y); const right = weierstrassEquation(x); if (!Fp2.eql(left, right)) throw new Error("bad point: equation left != right"); if (!this.isTorsionFree()) throw new Error("bad point: not in prime-order subgroup"); } hasEvenY() { const { y } = this.toAffine(); if (Fp2.isOdd) return !Fp2.isOdd(y); throw new Error("Field doesn't support isOdd"); } equals(other) { assertPrjPoint(other); const { px: X1, py: Y1, pz: Z1 } = this; const { px: X2, py: Y2, pz: Z2 } = other; const U1 = Fp2.eql(Fp2.mul(X1, Z2), Fp2.mul(X2, Z1)); const U2 = Fp2.eql(Fp2.mul(Y1, Z2), Fp2.mul(Y2, Z1)); return U1 && U2; } negate() { return new Point2(this.px, Fp2.neg(this.py), this.pz); } double() { const { a, b } = CURVE; const b3 = Fp2.mul(b, _3n2); const { px: X1, py: Y1, pz: Z1 } = this; let X3 = Fp2.ZERO, Y3 = Fp2.ZERO, Z3 = Fp2.ZERO; let t0 = Fp2.mul(X1, X1); let t1 = Fp2.mul(Y1, Y1); let t2 = Fp2.mul(Z1, Z1); let t3 = Fp2.mul(X1, Y1); t3 = Fp2.add(t3, t3); Z3 = Fp2.mul(X1, Z1); Z3 = Fp2.add(Z3, Z3); X3 = Fp2.mul(a, Z3); Y3 = Fp2.mul(b3, t2); Y3 = Fp2.add(X3, Y3); X3 = Fp2.sub(t1, Y3); Y3 = Fp2.add(t1, Y3); Y3 = Fp2.mul(X3, Y3); X3 = Fp2.mul(t3, X3); Z3 = Fp2.mul(b3, Z3); t2 = Fp2.mul(a, t2); t3 = Fp2.sub(t0, t2); t3 = Fp2.mul(a, t3); t3 = Fp2.add(t3, Z3); Z3 = Fp2.add(t0, t0); t0 = Fp2.add(Z3, t0); t0 = Fp2.add(t0, t2); t0 = Fp2.mul(t0, t3); Y3 = Fp2.add(Y3, t0); t2 = Fp2.mul(Y1, Z1); t2 = Fp2.add(t2, t2); t0 = Fp2.mul(t2, t3); X3 = Fp2.sub(X3, t0); Z3 = Fp2.mul(t2, t1); Z3 = Fp2.add(Z3, Z3); Z3 = Fp2.add(Z3, Z3); return new Point2(X3, Y3, Z3); } add(other) { assertPrjPoint(other); const { px: X1, py: Y1, pz: Z1 } = this; const { px: X2, py: Y2, pz: Z2 } = other; let X3 = Fp2.ZERO, Y3 = Fp2.ZERO, Z3 = Fp2.ZERO; const a = CURVE.a; const b3 = Fp2.mul(CURVE.b, _3n2); let t0 = Fp2.mul(X1, X2); let t1 = Fp2.mul(Y1, Y2); let t2 = Fp2.mul(Z1, Z2); let t3 = Fp2.add(X1, Y1); let t4 = Fp2.add(X2, Y2); t3 = Fp2.mul(t3, t4); t4 = Fp2.add(t0, t1); t3 = Fp2.sub(t3, t4); t4 = Fp2.add(X1, Z1); let t5 = Fp2.add(X2, Z2); t4 = Fp2.mul(t4, t5); t5 = Fp2.add(t0, t2); t4 = Fp2.sub(t4, t5); t5 = Fp2.add(Y1, Z1); X3 = Fp2.add(Y2, Z2); t5 = Fp2.mul(t5, X3); X3 = Fp2.add(t1, t2); t5 = Fp2.sub(t5, X3); Z3 = Fp2.mul(a, t4); X3 = Fp2.mul(b3, t2); Z3 = Fp2.add(X3, Z3); X3 = Fp2.sub(t1, Z3); Z3 = Fp2.add(t1, Z3); Y3 = Fp2.mul(X3, Z3); t1 = Fp2.add(t0, t0); t1 = Fp2.add(t1, t0); t2 = Fp2.mul(a, t2); t4 = Fp2.mul(b3, t4); t1 = Fp2.add(t1, t2); t2 = Fp2.sub(t0, t2); t2 = Fp2.mul(a, t2); t4 = Fp2.add(t4, t2); t0 = Fp2.mul(t1, t4); Y3 = Fp2.add(Y3, t0); t0 = Fp2.mul(t5, t4); X3 = Fp2.mul(t3, X3); X3 = Fp2.sub(X3, t0); t0 = Fp2.mul(t3, t1); Z3 = Fp2.mul(t5, Z3); Z3 = Fp2.add(Z3, t0); return new Point2(X3, Y3, Z3); } subtract(other) { return this.add(other.negate()); } is0() { return this.equals(Point2.ZERO); } wNAF(n) { return wnaf.wNAFCached(this, pointPrecomputes, n, (comp) => { const toInv = Fp2.invertBatch(comp.map((p) => p.pz)); return comp.map((p, i2) => p.toAffine(toInv[i2])).map(Point2.fromAffine); }); } multiplyUnsafe(n) { const I = Point2.ZERO; if (n === _0n4) return I; assertGE(n); if (n === _1n4) return this; const { endo } = CURVE; if (!endo) return wnaf.unsafeLadder(this, n); let { k1neg, k1, k2neg, k2 } = endo.splitScalar(n); let k1p = I; let k2p = I; let d = this; while (k1 > _0n4 || k2 > _0n4) { if (k1 & _1n4) k1p = k1p.add(d); if (k2 & _1n4) k2p = k2p.add(d); d = d.double(); k1 >>= _1n4; k2 >>= _1n4; } if (k1neg) k1p = k1p.negate(); if (k2neg) k2p = k2p.negate(); k2p = new Point2(Fp2.mul(k2p.px, endo.beta), k2p.py, k2p.pz); return k1p.add(k2p); } multiply(scalar) { assertGE(scalar); let n = scalar; let point, fake; const { endo } = CURVE; if (endo) { const { k1neg, k1, k2neg, k2 } = endo.splitScalar(n); let { p: k1p, f: f1p } = this.wNAF(k1); let { p: k2p, f: f2p } = this.wNAF(k2); k1p = wnaf.constTimeNegate(k1neg, k1p); k2p = wnaf.constTimeNegate(k2neg, k2p); k2p = new Point2(Fp2.mul(k2p.px, endo.beta), k2p.py, k2p.pz); point = k1p.add(k2p); fake = f1p.add(f2p); } else { const { p, f } = this.wNAF(n); point = p; fake = f; } return Point2.normalizeZ([point, fake])[0]; } multiplyAndAddUnsafe(Q, a, b) { const G = Point2.BASE; const mul = (P, a2) => a2 === _0n4 || a2 === _1n4 || !P.equals(G) ? P.multiplyUnsafe(a2) : P.multiply(a2); const sum = mul(this, a).add(mul(Q, b)); return sum.is0() ? void 0 : sum; } toAffine(iz) { const { px: x, py: y, pz: z } = this; const is0 = this.is0(); if (iz == null) iz = is0 ? Fp2.ONE : Fp2.inv(z); const ax = Fp2.mul(x, iz); const ay = Fp2.mul(y, iz); const zz = Fp2.mul(z, iz); if (is0) return { x: Fp2.ZERO, y: Fp2.ZERO }; if (!Fp2.eql(zz, Fp2.ONE)) throw new Error("invZ was invalid"); return { x: ax, y: ay }; } isTorsionFree() { const { h: cofactor, isTorsionFree } = CURVE; if (cofactor === _1n4) return true; if (isTorsionFree) return isTorsionFree(Point2, this); throw new Error("isTorsionFree() has not been declared for the elliptic curve"); } clearCofactor() { const { h: cofactor, clearCofactor } = CURVE; if (cofactor === _1n4) return this; if (clearCofactor) return clearCofactor(Point2, this); return this.multiplyUnsafe(CURVE.h); } toRawBytes(isCompressed = true) { this.assertValidity(); return toBytes3(Point2, this, isCompressed); } toHex(isCompressed = true) { return bytesToHex2(this.toRawBytes(isCompressed)); } } Point2.BASE = new Point2(CURVE.Gx, CURVE.Gy, Fp2.ONE); Point2.ZERO = new Point2(Fp2.ZERO, Fp2.ONE, Fp2.ZERO); const _bits = CURVE.nBitLength; const wnaf = wNAF(Point2, CURVE.endo ? Math.ceil(_bits / 2) : _bits); return { CURVE, ProjectivePoint: Point2, normPrivateKeyToScalar, weierstrassEquation, isWithinCurveOrder }; } function validateOpts(curve) { const opts = validateBasic(curve); validateObject(opts, { hash: "hash", hmac: "function", randomBytes: "function" }, { bits2int: "function", bits2int_modN: "function", lowS: "boolean" }); return Object.freeze({ lowS: true, ...opts }); } function weierstrass(curveDef) { const CURVE = validateOpts(curveDef); const { Fp: Fp2, n: CURVE_ORDER } = CURVE; const compressedLen = Fp2.BYTES + 1; const uncompressedLen = 2 * Fp2.BYTES + 1; function isValidFieldElement(num) { return _0n4 < num && num < Fp2.ORDER; } function modN2(a) { return mod(a, CURVE_ORDER); } function invN(a) { return invert(a, CURVE_ORDER); } const { ProjectivePoint: Point2, normPrivateKeyToScalar, weierstrassEquation, isWithinCurveOrder } = weierstrassPoints({ ...CURVE, toBytes(_c, point, isCompressed) { const a = point.toAffine(); const x = Fp2.toBytes(a.x); const cat = concatBytes3; if (isCompressed) { return cat(Uint8Array.from([point.hasEvenY() ? 2 : 3]), x); } else { return cat(Uint8Array.from([4]), x, Fp2.toBytes(a.y)); } }, fromBytes(bytes3) { const len = bytes3.length; const head = bytes3[0]; const tail = bytes3.subarray(1); if (len === compressedLen && (head === 2 || head === 3)) { const x = bytesToNumberBE(tail); if (!isValidFieldElement(x)) throw new Error("Point is not on curve"); const y2 = weierstrassEquation(x); let y = Fp2.sqrt(y2); const isYOdd = (y & _1n4) === _1n4; const isHeadOdd = (head & 1) === 1; if (isHeadOdd !== isYOdd) y = Fp2.neg(y); return { x, y }; } else if (len === uncompressedLen && head === 4) { const x = Fp2.fromBytes(tail.subarray(0, Fp2.BYTES)); const y = Fp2.fromBytes(tail.subarray(Fp2.BYTES, 2 * Fp2.BYTES)); return { x, y }; } else { throw new Error(`Point of length ${len} was invalid. Expected ${compressedLen} compressed bytes or ${uncompressedLen} uncompressed bytes`); } } }); const numToNByteStr = (num) => bytesToHex2(numberToBytesBE(num, CURVE.nByteLength)); function isBiggerThanHalfOrder(number3) { const HALF = CURVE_ORDER >> _1n4; return number3 > HALF; } function normalizeS(s) { return isBiggerThanHalfOrder(s) ? modN2(-s) : s; } const slcNum = (b, from, to) => bytesToNumberBE(b.slice(from, to)); class Signature { constructor(r, s, recovery) { this.r = r; this.s = s; this.recovery = recovery; this.assertValidity(); } static fromCompact(hex2) { const l = CURVE.nByteLength; hex2 = ensureBytes("compactSignature", hex2, l * 2); return new Signature(slcNum(hex2, 0, l), slcNum(hex2, l, 2 * l)); } static fromDER(hex2) { const { r, s } = DER.toSig(ensureBytes("DER", hex2)); return new Signature(r, s); } assertValidity() { if (!isWithinCurveOrder(this.r)) throw new Error("r must be 0 < r < CURVE.n"); if (!isWithinCurveOrder(this.s)) throw new Error("s must be 0 < s < CURVE.n"); } addRecoveryBit(recovery) { return new Signature(this.r, this.s, recovery); } recoverPublicKey(msgHash) { const { r, s, recovery: rec } = this; const h = bits2int_modN(ensureBytes("msgHash", msgHash)); if (rec == null || ![0, 1, 2, 3].includes(rec)) throw new Error("recovery id invalid"); const radj = rec === 2 || rec === 3 ? r + CURVE.n : r; if (radj >= Fp2.ORDER) throw new Error("recovery id 2 or 3 invalid"); const prefix = (rec & 1) === 0 ? "02" : "03"; const R = Point2.fromHex(prefix + numToNByteStr(radj)); const ir = invN(radj); const u1 = modN2(-h * ir); const u2 = modN2(s * ir); const Q = Point2.BASE.multiplyAndAddUnsafe(R, u1, u2); if (!Q) throw new Error("point at infinify"); Q.assertValidity(); return Q; } hasHighS() { return isBiggerThanHalfOrder(this.s); } normalizeS() { return this.hasHighS() ? new Signature(this.r, modN2(-this.s), this.recovery) : this; } toDERRawBytes() { return hexToBytes2(this.toDERHex()); } toDERHex() { return DER.hexFromSig({ r: this.r, s: this.s }); } toCompactRawBytes() { return hexToBytes2(this.toCompactHex()); } toCompactHex() { return numToNByteStr(this.r) + numToNByteStr(this.s); } } const utils = { isValidPrivateKey(privateKey) { try { normPrivateKeyToScalar(privateKey); return true; } catch (error) { return false; } }, normPrivateKeyToScalar, randomPrivateKey: () => { const length = getMinHashLength(CURVE.n); return mapHashToField(CURVE.randomBytes(length), CURVE.n); }, precompute(windowSize = 8, point = Point2.BASE) { point._setWindowSize(windowSize); point.multiply(BigInt(3)); return point; } }; function getPublicKey2(privateKey, isCompressed = true) { return Point2.fromPrivateKey(privateKey).toRawBytes(isCompressed); } function isProbPub(item) { const arr = item instanceof Uint8Array; const str = typeof item === "string"; const len = (arr || str) && item.length; if (arr) return len === compressedLen || len === uncompressedLen; if (str) return len === 2 * compressedLen || len === 2 * uncompressedLen; if (item instanceof Point2) return true; return false; } function getSharedSecret(privateA, publicB, isCompressed = true) { if (isProbPub(privateA)) throw new Error("first arg must be private key"); if (!isProbPub(publicB)) throw new Error("second arg must be public key"); const b = Point2.fromHex(publicB); return b.multiply(normPrivateKeyToScalar(privateA)).toRawBytes(isCompressed); } const bits2int = CURVE.bits2int || function(bytes3) { const num = bytesToNumberBE(bytes3); const delta = bytes3.length * 8 - CURVE.nBitLength; return delta > 0 ? num >> BigInt(delta) : num; }; const bits2int_modN = CURVE.bits2int_modN || function(bytes3) { return modN2(bits2int(bytes3)); }; const ORDER_MASK = bitMask(CURVE.nBitLength); function int2octets(num) { if (typeof num !== "bigint") throw new Error("bigint expected"); if (!(_0n4 <= num && num < ORDER_MASK)) throw new Error(`bigint expected < 2^${CURVE.nBitLength}`); return numberToBytesBE(num, CURVE.nByteLength); } function prepSig(msgHash, privateKey, opts = defaultSigOpts) { if (["recovered", "canonical"].some((k) => k in opts)) throw new Error("sign() legacy options not supported"); const { hash: hash3, randomBytes: randomBytes2 } = CURVE; let { lowS, prehash, extraEntropy: ent } = opts; if (lowS == null) lowS = true; msgHash = ensureBytes("msgHash", msgHash); if (prehash) msgHash = ensureBytes("prehashed msgHash", hash3(msgHash)); const h1int = bits2int_modN(msgHash); const d = normPrivateKeyToScalar(privateKey); const seedArgs = [int2octets(d), int2octets(h1int)]; if (ent != null) { const e = ent === true ? randomBytes2(Fp2.BYTES) : ent; seedArgs.push(ensureBytes("extraEntropy", e)); } const seed = concatBytes3(...seedArgs); const m = h1int; function k2sig(kBytes) { const k = bits2int(kBytes); if (!isWithinCurveOrder(k)) return; const ik = invN(k); const q = Point2.BASE.multiply(k).toAffine(); const r = modN2(q.x); if (r === _0n4) return; const s = modN2(ik * modN2(m + r * d)); if (s === _0n4) return; let recovery = (q.x === r ? 0 : 2) | Number(q.y & _1n4); let normS = s; if (lowS && isBiggerThanHalfOrder(s)) { normS = normalizeS(s); recovery ^= 1; } return new Signature(r, normS, recovery); } return { seed, k2sig }; } const defaultSigOpts = { lowS: CURVE.lowS, prehash: false }; const defaultVerOpts = { lowS: CURVE.lowS, prehash: false }; function sign(msgHash, privKey, opts = defaultSigOpts) { const { seed, k2sig } = prepSig(msgHash, privKey, opts); const C = CURVE; const drbg = createHmacDrbg(C.hash.outputLen, C.nByteLength, C.hmac); return drbg(seed, k2sig); } Point2.BASE._setWindowSize(8); function verify(signature, msgHash, publicKey, opts = defaultVerOpts) { const sg = signature; msgHash = ensureBytes("msgHash", msgHash); publicKey = ensureBytes("publicKey", publicKey); if ("strict" in opts) throw new Error("options.strict was renamed to lowS"); const { lowS, prehash } = opts; let _sig = void 0; let P; try { if (typeof sg === "string" || sg instanceof Uint8Array) { try { _sig = Signature.fromDER(sg); } catch (derError) { if (!(derError instanceof DER.Err)) throw derError; _sig = Signature.fromCompact(sg); } } else if (typeof sg === "object" && typeof sg.r === "bigint" && typeof sg.s === "bigint") { const { r: r2, s: s2 } = sg; _sig = new Signature(r2, s2); } else { throw new Error("PARSE"); } P = Point2.fromHex(publicKey); } catch (error) { if (error.message === "PARSE") throw new Error(`signature must be Signature instance, Uint8Array or hex string`); return false; } if (lowS && _sig.hasHighS()) return false; if (prehash) msgHash = CURVE.hash(msgHash); const { r, s } = _sig; const h = bits2int_modN(msgHash); const is = invN(s); const u1 = modN2(h * is); const u2 = modN2(r * is); const R = Point2.BASE.multiplyAndAddUnsafe(P, u1, u2)?.toAffine(); if (!R) return false; const v = modN2(R.x); return v === r; } return { CURVE, getPublicKey: getPublicKey2, getSharedSecret, sign, verify, ProjectivePoint: Point2, Signature, utils }; } // node_modules/@noble/curves/node_modules/@noble/hashes/esm/hmac.js var HMAC = class extends Hash2 { constructor(hash3, _key) { super(); this.finished = false; this.destroyed = false; hash(hash3); const key = toBytes2(_key); this.iHash = hash3.create(); if (typeof this.iHash.update !== "function") throw new Error("Expected instance of class which extends utils.Hash"); this.blockLen = this.iHash.blockLen; this.outputLen = this.iHash.outputLen; const blockLen = this.blockLen; const pad = new Uint8Array(blockLen); pad.set(key.length > blockLen ? hash3.create().update(key).digest() : key); for (let i2 = 0; i2 < pad.length; i2++) pad[i2] ^= 54; this.iHash.update(pad); this.oHash = hash3.create(); for (let i2 = 0; i2 < pad.length; i2++) pad[i2] ^= 54 ^ 92; this.oHash.update(pad); pad.fill(0); } update(buf) { exists(this); this.iHash.update(buf); return this; } digestInto(out) { exists(this); bytes(out, this.outputLen); this.finished = true; this.iHash.digestInto(out); this.oHash.update(out); this.oHash.digestInto(out); this.destroy(); } digest() { const out = new Uint8Array(this.oHash.outputLen); this.digestInto(out); return out; } _cloneInto(to) { to || (to = Object.create(Object.getPrototypeOf(this), {})); const { oHash, iHash, finished, destroyed, blockLen, outputLen } = this; to = to; to.finished = finished; to.destroyed = destroyed; to.blockLen = blockLen; to.outputLen = outputLen; to.oHash = oHash._cloneInto(to.oHash); to.iHash = iHash._cloneInto(to.iHash); return to; } destroy() { this.destroyed = true; this.oHash.destroy(); this.iHash.destroy(); } }; var hmac = (hash3, key, message) => new HMAC(hash3, key).update(message).digest(); hmac.create = (hash3, key) => new HMAC(hash3, key); // node_modules/@noble/curves/esm/_shortw_utils.js function getHash(hash3) { return { hash: hash3, hmac: (key, ...msgs) => hmac(hash3, key, concatBytes2(...msgs)), randomBytes }; } function createCurve(curveDef, defHash) { const create = (hash3) => weierstrass({ ...curveDef, ...getHash(hash3) }); return Object.freeze({ ...create(defHash), create }); } // node_modules/@noble/curves/esm/secp256k1.js var secp256k1P = BigInt("0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f"); var secp256k1N = BigInt("0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141"); var _1n5 = BigInt(1); var _2n4 = BigInt(2); var divNearest = (a, b) => (a + b / _2n4) / b; function sqrtMod(y) { const P = secp256k1P; const _3n3 = BigInt(3), _6n = BigInt(6), _11n = BigInt(11), _22n = BigInt(22); const _23n = BigInt(23), _44n = BigInt(44), _88n = BigInt(88); const b2 = y * y * y % P; const b3 = b2 * b2 * y % P; const b6 = pow2(b3, _3n3, P) * b3 % P; const b9 = pow2(b6, _3n3, P) * b3 % P; const b11 = pow2(b9, _2n4, P) * b2 % P; const b22 = pow2(b11, _11n, P) * b11 % P; const b44 = pow2(b22, _22n, P) * b22 % P; const b88 = pow2(b44, _44n, P) * b44 % P; const b176 = pow2(b88, _88n, P) * b88 % P; const b220 = pow2(b176, _44n, P) * b44 % P; const b223 = pow2(b220, _3n3, P) * b3 % P; const t1 = pow2(b223, _23n, P) * b22 % P; const t2 = pow2(t1, _6n, P) * b2 % P; const root = pow2(t2, _2n4, P); if (!Fp.eql(Fp.sqr(root), y)) throw new Error("Cannot find square root"); return root; } var Fp = Field(secp256k1P, void 0, void 0, { sqrt: sqrtMod }); var secp256k1 = createCurve({ a: BigInt(0), b: BigInt(7), Fp, n: secp256k1N, Gx: BigInt("55066263022277343669578718895168534326250603453777594175500187360389116729240"), Gy: BigInt("32670510020758816978083085130507043184471273380659243275938904335757337482424"), h: BigInt(1), lowS: true, endo: { beta: BigInt("0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee"), splitScalar: (k) => { const n = secp256k1N; const a1 = BigInt("0x3086d221a7d46bcde86c90e49284eb15"); const b1 = -_1n5 * BigInt("0xe4437ed6010e88286f547fa90abfe4c3"); const a2 = BigInt("0x114ca50f7a8e2f3f657c1108d9d44cfd8"); const b2 = a1; const POW_2_128 = BigInt("0x100000000000000000000000000000000"); const c1 = divNearest(b2 * k, n); const c2 = divNearest(-b1 * k, n); let k1 = mod(k - c1 * a1 - c2 * a2, n); let k2 = mod(-c1 * b1 - c2 * b2, n); const k1neg = k1 > POW_2_128; const k2neg = k2 > POW_2_128; if (k1neg) k1 = n - k1; if (k2neg) k2 = n - k2; if (k1 > POW_2_128 || k2 > POW_2_128) { throw new Error("splitScalar: Endomorphism failed, k=" + k); } return { k1neg, k1, k2neg, k2 }; } } }, sha256); var _0n5 = BigInt(0); var fe = (x) => typeof x === "bigint" && _0n5 < x && x < secp256k1P; var ge = (x) => typeof x === "bigint" && _0n5 < x && x < secp256k1N; var TAGGED_HASH_PREFIXES = {}; function taggedHash(tag, ...messages) { let tagP = TAGGED_HASH_PREFIXES[tag]; if (tagP === void 0) { const tagH = sha256(Uint8Array.from(tag, (c) => c.charCodeAt(0))); tagP = concatBytes3(tagH, tagH); TAGGED_HASH_PREFIXES[tag] = tagP; } return sha256(concatBytes3(tagP, ...messages)); } var pointToBytes = (point) => point.toRawBytes(true).slice(1); var numTo32b = (n) => numberToBytesBE(n, 32); var modP = (x) => mod(x, secp256k1P); var modN = (x) => mod(x, secp256k1N); var Point = secp256k1.ProjectivePoint; var GmulAdd = (Q, a, b) => Point.BASE.multiplyAndAddUnsafe(Q, a, b); function schnorrGetExtPubKey(priv) { let d_ = secp256k1.utils.normPrivateKeyToScalar(priv); let p = Point.fromPrivateKey(d_); const scalar = p.hasEvenY() ? d_ : modN(-d_); return { scalar, bytes: pointToBytes(p) }; } function lift_x(x) { if (!fe(x)) throw new Error("bad x: need 0 < x < p"); const xx = modP(x * x); const c = modP(xx * x + BigInt(7)); let y = sqrtMod(c); if (y % _2n4 !== _0n5) y = modP(-y); const p = new Point(x, y, _1n5); p.assertValidity(); return p; } function challenge(...args) { return modN(bytesToNumberBE(taggedHash("BIP0340/challenge", ...args))); } function schnorrGetPublicKey(privateKey) { return schnorrGetExtPubKey(privateKey).bytes; } function schnorrSign(message, privateKey, auxRand = randomBytes(32)) { const m = ensureBytes("message", message); const { bytes: px, scalar: d } = schnorrGetExtPubKey(privateKey); const a = ensureBytes("auxRand", auxRand, 32); const t = numTo32b(d ^ bytesToNumberBE(taggedHash("BIP0340/aux", a))); const rand = taggedHash("BIP0340/nonce", t, px, m); const k_ = modN(bytesToNumberBE(rand)); if (k_ === _0n5) throw new Error("sign failed: k is zero"); const { bytes: rx, scalar: k } = schnorrGetExtPubKey(k_); const e = challenge(rx, px, m); const sig = new Uint8Array(64); sig.set(rx, 0); sig.set(numTo32b(modN(k + e * d)), 32); if (!schnorrVerify(sig, m, px)) throw new Error("sign: Invalid signature produced"); return sig; } function schnorrVerify(signature, message, publicKey) { const sig = ensureBytes("signature", signature, 64); const m = ensureBytes("message", message); const pub = ensureBytes("publicKey", publicKey, 32); try { const P = lift_x(bytesToNumberBE(pub)); const r = bytesToNumberBE(sig.subarray(0, 32)); if (!fe(r)) return false; const s = bytesToNumberBE(sig.subarray(32, 64)); if (!ge(s)) return false; const e = challenge(numTo32b(r), pointToBytes(P), m); const R = GmulAdd(P, s, modN(-e)); if (!R || !R.hasEvenY() || R.toAffine().x !== r) return false; return true; } catch (error) { return false; } } var schnorr = /* @__PURE__ */ (() => ({ getPublicKey: schnorrGetPublicKey, sign: schnorrSign, verify: schnorrVerify, utils: { randomPrivateKey: secp256k1.utils.randomPrivateKey, lift_x, pointToBytes, numberToBytesBE, bytesToNumberBE, taggedHash, mod } }))(); // node_modules/@noble/hashes/esm/_assert.js function number2(n) { if (!Number.isSafeInteger(n) || n < 0) throw new Error(`Wrong positive integer: ${n}`); } function bool(b) { if (typeof b !== "boolean") throw new Error(`Expected boolean, not ${b}`); } function bytes2(b, ...lengths) { if (!(b instanceof Uint8Array)) throw new Error("Expected Uint8Array"); if (lengths.length > 0 && !lengths.includes(b.length)) throw new Error(`Expected Uint8Array of length ${lengths}, not of length=${b.length}`); } function hash2(hash3) { if (typeof hash3 !== "function" || typeof hash3.create !== "function") throw new Error("Hash should be wrapped by utils.wrapConstructor"); number2(hash3.outputLen); number2(hash3.blockLen); } function exists2(instance, checkFinished = true) { if (instance.destroyed) throw new Error("Hash instance has been destroyed"); if (checkFinished && instance.finished) throw new Error("Hash#digest() has already been called"); } function output2(out, instance) { bytes2(out); const min = instance.outputLen; if (out.length < min) { throw new Error(`digestInto() expects output buffer of length at least ${min}`); } } var assert = { number: number2, bool, bytes: bytes2, hash: hash2, exists: exists2, output: output2 }; var assert_default = assert; // node_modules/@noble/hashes/esm/_sha2.js function setBigUint642(view, byteOffset, value, isLE3) { if (typeof view.setBigUint64 === "function") return view.setBigUint64(byteOffset, value, isLE3); const _32n = BigInt(32); const _u32_max = BigInt(4294967295); const wh = Number(value >> _32n & _u32_max); const wl = Number(value & _u32_max); const h = isLE3 ? 4 : 0; const l = isLE3 ? 0 : 4; view.setUint32(byteOffset + h, wh, isLE3); view.setUint32(byteOffset + l, wl, isLE3); } var SHA22 = class extends Hash { constructor(blockLen, outputLen, padOffset, isLE3) { super(); this.blockLen = blockLen; this.outputLen = outputLen; this.padOffset = padOffset; this.isLE = isLE3; this.finished = false; this.length = 0; this.pos = 0; this.destroyed = false; this.buffer = new Uint8Array(blockLen); this.view = createView(this.buffer); } update(data) { assert_default.exists(this); const { view, buffer, blockLen } = this; data = toBytes(data); const len = data.length; for (let pos = 0; pos < len; ) { const take = Math.min(blockLen - this.pos, len - pos); if (take === blockLen) { const dataView = createView(data); for (; blockLen <= len - pos; pos += blockLen) this.process(dataView, pos); continue; } buffer.set(data.subarray(pos, pos + take), this.pos); this.pos += take; pos += take; if (this.pos === blockLen) { this.process(view, 0); this.pos = 0; } } this.length += data.length; this.roundClean(); return this; } digestInto(out) { assert_default.exists(this); assert_default.output(out, this); this.finished = true; const { buffer, view, blockLen, isLE: isLE3 } = this; let { pos } = this; buffer[pos++] = 128; this.buffer.subarray(pos).fill(0); if (this.padOffset > blockLen - pos) { this.process(view, 0); pos = 0; } for (let i2 = pos; i2 < blockLen; i2++) buffer[i2] = 0; setBigUint642(view, blockLen - 8, BigInt(this.length * 8), isLE3); this.process(view, 0); const oview = createView(out); const len = this.outputLen; if (len % 4) throw new Error("_sha2: outputLen should be aligned to 32bit"); const outLen = len / 4; const state = this.get(); if (outLen > state.length) throw new Error("_sha2: outputLen bigger than state"); for (let i2 = 0; i2 < outLen; i2++) oview.setUint32(4 * i2, state[i2], isLE3); } digest() { const { buffer, outputLen } = this; this.digestInto(buffer); const res = buffer.slice(0, outputLen); this.destroy(); return res; } _cloneInto(to) { to || (to = new this.constructor()); to.set(...this.get()); const { blockLen, buffer, length, finished, destroyed, pos } = this; to.length = length; to.pos = pos; to.finished = finished; to.destroyed = destroyed; if (length % blockLen) to.buffer.set(buffer); return to; } }; // node_modules/@noble/hashes/esm/sha256.js var Chi2 = (a, b, c) => a & b ^ ~a & c; var Maj2 = (a, b, c) => a & b ^ a & c ^ b & c; var SHA256_K2 = new Uint32Array([ 1116352408, 1899447441, 3049323471, 3921009573, 961987163, 1508970993, 2453635748, 2870763221, 3624381080, 310598401, 607225278, 1426881987, 1925078388, 2162078206, 2614888103, 3248222580, 3835390401, 4022224774, 264347078, 604807628, 770255983, 1249150122, 1555081692, 1996064986, 2554220882, 2821834349, 2952996808, 3210313671, 3336571891, 3584528711, 113926993, 338241895, 666307205, 773529912, 1294757372, 1396182291, 1695183700, 1986661051, 2177026350, 2456956037, 2730485921, 2820302411, 3259730800, 3345764771, 3516065817, 3600352804, 4094571909, 275423344, 430227734, 506948616, 659060556, 883997877, 958139571, 1322822218, 1537002063, 1747873779, 1955562222, 2024104815, 2227730452, 2361852424, 2428436474, 2756734187, 3204031479, 3329325298 ]); var IV2 = new Uint32Array([ 1779033703, 3144134277, 1013904242, 2773480762, 1359893119, 2600822924, 528734635, 1541459225 ]); var SHA256_W2 = new Uint32Array(64); var SHA2562 = class extends SHA22 { constructor() { super(64, 32, 8, false); this.A = IV2[0] | 0; this.B = IV2[1] | 0; this.C = IV2[2] | 0; this.D = IV2[3] | 0; this.E = IV2[4] | 0; this.F = IV2[5] | 0; this.G = IV2[6] | 0; this.H = IV2[7] | 0; } get() { const { A, B, C, D, E, F, G, H } = this; return [A, B, C, D, E, F, G, H]; } set(A, B, C, D, E, F, G, H) { this.A = A | 0; this.B = B | 0; this.C = C | 0; this.D = D | 0; this.E = E | 0; this.F = F | 0; this.G = G | 0; this.H = H | 0; } process(view, offset) { for (let i2 = 0; i2 < 16; i2++, offset += 4) SHA256_W2[i2] = view.getUint32(offset, false); for (let i2 = 16; i2 < 64; i2++) { const W15 = SHA256_W2[i2 - 15]; const W2 = SHA256_W2[i2 - 2]; const s0 = rotr(W15, 7) ^ rotr(W15, 18) ^ W15 >>> 3; const s1 = rotr(W2, 17) ^ rotr(W2, 19) ^ W2 >>> 10; SHA256_W2[i2] = s1 + SHA256_W2[i2 - 7] + s0 + SHA256_W2[i2 - 16] | 0; } let { A, B, C, D, E, F, G, H } = this; for (let i2 = 0; i2 < 64; i2++) { const sigma1 = rotr(E, 6) ^ rotr(E, 11) ^ rotr(E, 25); const T1 = H + sigma1 + Chi2(E, F, G) + SHA256_K2[i2] + SHA256_W2[i2] | 0; const sigma0 = rotr(A, 2) ^ rotr(A, 13) ^ rotr(A, 22); const T2 = sigma0 + Maj2(A, B, C) | 0; H = G; G = F; F = E; E = D + T1 | 0; D = C; C = B; B = A; A = T1 + T2 | 0; } A = A + this.A | 0; B = B + this.B | 0; C = C + this.C | 0; D = D + this.D | 0; E = E + this.E | 0; F = F + this.F | 0; G = G + this.G | 0; H = H + this.H | 0; this.set(A, B, C, D, E, F, G, H); } roundClean() { SHA256_W2.fill(0); } destroy() { this.set(0, 0, 0, 0, 0, 0, 0, 0); this.buffer.fill(0); } }; var SHA224 = class extends SHA2562 { constructor() { super(); this.A = 3238371032 | 0; this.B = 914150663 | 0; this.C = 812702999 | 0; this.D = 4144912697 | 0; this.E = 4290775857 | 0; this.F = 1750603025 | 0; this.G = 1694076839 | 0; this.H = 3204075428 | 0; this.outputLen = 28; } }; var sha2562 = wrapConstructor(() => new SHA2562()); var sha224 = wrapConstructor(() => new SHA224()); // node_modules/nostr-tools/lib/esm/pool.js var verifiedSymbol = Symbol("verified"); var isRecord = (obj) => obj instanceof Object; function validateEvent(event) { if (!isRecord(event)) return false; if (typeof event.kind !== "number") return false; if (typeof event.content !== "string") return false; if (typeof event.created_at !== "number") return false; if (typeof event.pubkey !== "string") return false; if (!event.pubkey.match(/^[a-f0-9]{64}$/)) return false; if (!Array.isArray(event.tags)) return false; for (let i2 = 0; i2 < event.tags.length; i2++) { let tag = event.tags[i2]; if (!Array.isArray(tag)) return false; for (let j = 0; j < tag.length; j++) { if (typeof tag[j] === "object") return false; } } return true; } var utf8Decoder2 = new TextDecoder("utf-8"); var utf8Encoder2 = new TextEncoder(); function normalizeURL(url) { if (url.indexOf("://") === -1) url = "wss://" + url; let p = new URL(url); p.pathname = p.pathname.replace(/\/+/g, "/"); if (p.pathname.endsWith("/")) p.pathname = p.pathname.slice(0, -1); if (p.port === "80" && p.protocol === "ws:" || p.port === "443" && p.protocol === "wss:") p.port = ""; p.searchParams.sort(); p.hash = ""; return p.toString(); } var QueueNode = class { value; next = null; prev = null; constructor(message) { this.value = message; } }; var Queue = class { first; last; constructor() { this.first = null; this.last = null; } enqueue(value) { const newNode = new QueueNode(value); if (!this.last) { this.first = newNode; this.last = newNode; } else if (this.last === this.first) { this.last = newNode; this.last.prev = this.first; this.first.next = newNode; } else { newNode.prev = this.last; this.last.next = newNode; this.last = newNode; } return true; } dequeue() { if (!this.first) return null; if (this.first === this.last) { const target2 = this.first; this.first = null; this.last = null; return target2.value; } const target = this.first; this.first = target.next; return target.value; } }; var JS = class { generateSecretKey() { return schnorr.utils.randomPrivateKey(); } getPublicKey(secretKey) { return bytesToHex(schnorr.getPublicKey(secretKey)); } finalizeEvent(t, secretKey) { const event = t; event.pubkey = bytesToHex(schnorr.getPublicKey(secretKey)); event.id = getEventHash(event); event.sig = bytesToHex(schnorr.sign(getEventHash(event), secretKey)); event[verifiedSymbol] = true; return event; } verifyEvent(event) { if (typeof event[verifiedSymbol] === "boolean") return event[verifiedSymbol]; const hash3 = getEventHash(event); if (hash3 !== event.id) { event[verifiedSymbol] = false; return false; } try { const valid = schnorr.verify(event.sig, hash3, event.pubkey); event[verifiedSymbol] = valid; return valid; } catch (err) { event[verifiedSymbol] = false; return false; } } }; function serializeEvent(evt) { if (!validateEvent(evt)) throw new Error("can't serialize event with wrong or missing properties"); return JSON.stringify([0, evt.pubkey, evt.created_at, evt.kind, evt.tags, evt.content]); } function getEventHash(event) { let eventHash = sha2562(utf8Encoder2.encode(serializeEvent(event))); return bytesToHex(eventHash); } var i = new JS(); var generateSecretKey = i.generateSecretKey; var getPublicKey = i.getPublicKey; var finalizeEvent = i.finalizeEvent; var verifyEvent = i.verifyEvent; var ClientAuth = 22242; function matchFilter(filter, event) { if (filter.ids && filter.ids.indexOf(event.id) === -1) { return false; } if (filter.kinds && filter.kinds.indexOf(event.kind) === -1) { return false; } if (filter.authors && filter.authors.indexOf(event.pubkey) === -1) { return false; } for (let f in filter) { if (f[0] === "#") { let tagName = f.slice(1); let values = filter[`#${tagName}`]; if (values && !event.tags.find(([t, v]) => t === f.slice(1) && values.indexOf(v) !== -1)) return false; } } if (filter.since && event.created_at < filter.since) return false; if (filter.until && event.created_at > filter.until) return false; return true; } function matchFilters(filters, event) { for (let i2 = 0; i2 < filters.length; i2++) { if (matchFilter(filters[i2], event)) { return true; } } return false; } function getHex64(json, field) { let len = field.length + 3; let idx = json.indexOf(`"${field}":`) + len; let s = json.slice(idx).indexOf(`"`) + idx + 1; return json.slice(s, s + 64); } function getSubscriptionId(json) { let idx = json.slice(0, 22).indexOf(`"EVENT"`); if (idx === -1) return null; let pstart = json.slice(idx + 7 + 1).indexOf(`"`); if (pstart === -1) return null; let start = idx + 7 + 1 + pstart; let pend = json.slice(start + 1, 80).indexOf(`"`); if (pend === -1) return null; let end = start + 1 + pend; return json.slice(start + 1, end); } function makeAuthEvent(relayURL, challenge2) { return { kind: ClientAuth, created_at: Math.floor(Date.now() / 1e3), tags: [ ["relay", relayURL], ["challenge", challenge2] ], content: "" }; } async function yieldThread() { return new Promise((resolve) => { const ch = new MessageChannel(); const handler = () => { ch.port1.removeEventListener("message", handler); resolve(); }; ch.port1.addEventListener("message", handler); ch.port2.postMessage(0); ch.port1.start(); }); } var alwaysTrue = (t) => { t[verifiedSymbol] = true; return true; }; var AbstractRelay = class { url; _connected = false; onclose = null; onnotice = (msg) => console.debug(`NOTICE from ${this.url}: ${msg}`); _onauth = null; baseEoseTimeout = 4400; connectionTimeout = 4400; openSubs = /* @__PURE__ */ new Map(); connectionTimeoutHandle; connectionPromise; openCountRequests = /* @__PURE__ */ new Map(); openEventPublishes = /* @__PURE__ */ new Map(); ws; incomingMessageQueue = new Queue(); queueRunning = false; challenge; serial = 0; verifyEvent; _WebSocket; constructor(url, opts) { this.url = normalizeURL(url); this.verifyEvent = opts.verifyEvent; this._WebSocket = opts.websocketImplementation || WebSocket; } static async connect(url, opts) { const relay = new AbstractRelay(url, opts); await relay.connect(); return relay; } closeAllSubscriptions(reason) { for (let [_, sub] of this.openSubs) { sub.close(reason); } this.openSubs.clear(); for (let [_, ep] of this.openEventPublishes) { ep.reject(new Error(reason)); } this.openEventPublishes.clear(); for (let [_, cr] of this.openCountRequests) { cr.reject(new Error(reason)); } this.openCountRequests.clear(); } get connected() { return this._connected; } async connect() { if (this.connectionPromise) return this.connectionPromise; this.challenge = void 0; this.connectionPromise = new Promise((resolve, reject) => { this.connectionTimeoutHandle = setTimeout(() => { reject("connection timed out"); this.connectionPromise = void 0; this.onclose?.(); this.closeAllSubscriptions("relay connection timed out"); }, this.connectionTimeout); try { this.ws = new this._WebSocket(this.url); } catch (err) { reject(err); return; } this.ws.onopen = () => { clearTimeout(this.connectionTimeoutHandle); this._connected = true; resolve(); }; this.ws.onerror = (ev) => { reject(ev.message || "websocket error"); if (this._connected) { this._connected = false; this.connectionPromise = void 0; this.onclose?.(); this.closeAllSubscriptions("relay connection errored"); } }; this.ws.onclose = async () => { if (this._connected) { this._connected = false; this.connectionPromise = void 0; this.onclose?.(); this.closeAllSubscriptions("relay connection closed"); } }; this.ws.onmessage = this._onmessage.bind(this); }); return this.connectionPromise; } async runQueue() { this.queueRunning = true; while (true) { if (false === this.handleNext()) { break; } await yieldThread(); } this.queueRunning = false; } handleNext() { const json = this.incomingMessageQueue.dequeue(); if (!json) { return false; } const subid = getSubscriptionId(json); if (subid) { const so = this.openSubs.get(subid); if (!so) { return; } const id = getHex64(json, "id"); const alreadyHave = so.alreadyHaveEvent?.(id); so.receivedEvent?.(this, id); if (alreadyHave) { return; } } try { let data = JSON.parse(json); switch (data[0]) { case "EVENT": { const so = this.openSubs.get(data[1]); const event = data[2]; if (this.verifyEvent(event) && matchFilters(so.filters, event)) { so.onevent(event); } return; } case "COUNT": { const id = data[1]; const payload = data[2]; const cr = this.openCountRequests.get(id); if (cr) { cr.resolve(payload.count); this.openCountRequests.delete(id); } return; } case "EOSE": { const so = this.openSubs.get(data[1]); if (!so) return; so.receivedEose(); return; } case "OK": { const id = data[1]; const ok = data[2]; const reason = data[3]; const ep = this.openEventPublishes.get(id); if (ok) ep.resolve(reason); else ep.reject(new Error(reason)); this.openEventPublishes.delete(id); return; } case "CLOSED": { const id = data[1]; const so = this.openSubs.get(id); if (!so) return; so.closed = true; so.close(data[2]); return; } case "NOTICE": this.onnotice(data[1]); return; case "AUTH": { this.challenge = data[1]; this._onauth?.(data[1]); return; } } } catch (err) { return; } } async send(message) { if (!this.connectionPromise) throw new Error("sending on closed connection"); this.connectionPromise.then(() => { this.ws?.send(message); }); } async auth(signAuthEvent) { if (!this.challenge) throw new Error("can't perform auth, no challenge was received"); const evt = await signAuthEvent(makeAuthEvent(this.url, this.challenge)); const ret = new Promise((resolve, reject) => { this.openEventPublishes.set(evt.id, { resolve, reject }); }); this.send('["AUTH",' + JSON.stringify(evt) + "]"); return ret; } async publish(event) { const ret = new Promise((resolve, reject) => { this.openEventPublishes.set(event.id, { resolve, reject }); }); this.send('["EVENT",' + JSON.stringify(event) + "]"); return ret; } async count(filters, params) { this.serial++; const id = params?.id || "count:" + this.serial; const ret = new Promise((resolve, reject) => { this.openCountRequests.set(id, { resolve, reject }); }); this.send('["COUNT","' + id + '",' + JSON.stringify(filters).substring(1)); return ret; } subscribe(filters, params) { const subscription = this.prepareSubscription(filters, params); subscription.fire(); return subscription; } prepareSubscription(filters, params) { this.serial++; const id = params.id || "sub:" + this.serial; const subscription = new Subscription(this, id, filters, params); this.openSubs.set(id, subscription); return subscription; } close() { this.closeAllSubscriptions("relay connection closed by us"); this._connected = false; this.ws?.close(); } _onmessage(ev) { this.incomingMessageQueue.enqueue(ev.data); if (!this.queueRunning) { this.runQueue(); } } }; var Subscription = class { relay; id; closed = false; eosed = false; filters; alreadyHaveEvent; receivedEvent; onevent; oneose; onclose; eoseTimeout; eoseTimeoutHandle; constructor(relay, id, filters, params) { this.relay = relay; this.filters = filters; this.id = id; this.alreadyHaveEvent = params.alreadyHaveEvent; this.receivedEvent = params.receivedEvent; this.eoseTimeout = params.eoseTimeout || relay.baseEoseTimeout; this.oneose = params.oneose; this.onclose = params.onclose; this.onevent = params.onevent || ((event) => { console.warn( `onevent() callback not defined for subscription '${this.id}' in relay ${this.relay.url}. event received:`, event ); }); } fire() { this.relay.send('["REQ","' + this.id + '",' + JSON.stringify(this.filters).substring(1)); this.eoseTimeoutHandle = setTimeout(this.receivedEose.bind(this), this.eoseTimeout); } receivedEose() { if (this.eosed) return; clearTimeout(this.eoseTimeoutHandle); this.eosed = true; this.oneose?.(); } close(reason = "closed by caller") { if (!this.closed && this.relay.connected) { this.relay.send('["CLOSE",' + JSON.stringify(this.id) + "]"); this.closed = true; } this.relay.openSubs.delete(this.id); this.onclose?.(reason); } }; var AbstractSimplePool = class { relays = /* @__PURE__ */ new Map(); seenOn = /* @__PURE__ */ new Map(); trackRelays = false; verifyEvent; trustedRelayURLs = /* @__PURE__ */ new Set(); _WebSocket; constructor(opts) { this.verifyEvent = opts.verifyEvent; this._WebSocket = opts.websocketImplementation; } async ensureRelay(url, params) { url = normalizeURL(url); let relay = this.relays.get(url); if (!relay) { relay = new AbstractRelay(url, { verifyEvent: this.trustedRelayURLs.has(url) ? alwaysTrue : this.verifyEvent, websocketImplementation: this._WebSocket }); if (params?.connectionTimeout) relay.connectionTimeout = params.connectionTimeout; this.relays.set(url, relay); } await relay.connect(); return relay; } close(relays) { relays.map(normalizeURL).forEach((url) => { this.relays.get(url)?.close(); }); } subscribeMany(relays, filters, params) { return this.subscribeManyMap(Object.fromEntries(relays.map((url) => [url, filters])), params); } subscribeManyMap(requests, params) { if (this.trackRelays) { params.receivedEvent = (relay, id) => { let set = this.seenOn.get(id); if (!set) { set = /* @__PURE__ */ new Set(); this.seenOn.set(id, set); } set.add(relay); }; } const _knownIds = /* @__PURE__ */ new Set(); const subs = []; const relaysLength = Object.keys(requests).length; const eosesReceived = []; let handleEose = (i2) => { eosesReceived[i2] = true; if (eosesReceived.filter((a) => a).length === relaysLength) { params.oneose?.(); handleEose = () => { }; } }; const closesReceived = []; let handleClose = (i2, reason) => { handleEose(i2); closesReceived[i2] = reason; if (closesReceived.filter((a) => a).length === relaysLength) { params.onclose?.(closesReceived); handleClose = () => { }; } }; const localAlreadyHaveEventHandler = (id) => { if (params.alreadyHaveEvent?.(id)) { return true; } const have = _knownIds.has(id); _knownIds.add(id); return have; }; const allOpened = Promise.all( Object.entries(requests).map(async (req, i2, arr) => { if (arr.indexOf(req) !== i2) { handleClose(i2, "duplicate url"); return; } let [url, filters] = req; url = normalizeURL(url); let relay; try { relay = await this.ensureRelay(url, { connectionTimeout: params.maxWait ? Math.max(params.maxWait * 0.8, params.maxWait - 1e3) : void 0 }); } catch (err) { handleClose(i2, err?.message || String(err)); return; } let subscription = relay.subscribe(filters, { ...params, oneose: () => handleEose(i2), onclose: (reason) => handleClose(i2, reason), alreadyHaveEvent: localAlreadyHaveEventHandler, eoseTimeout: params.maxWait }); subs.push(subscription); }) ); return { async close() { await allOpened; subs.forEach((sub) => { sub.close(); }); } }; } subscribeManyEose(relays, filters, params) { const subcloser = this.subscribeMany(relays, filters, { ...params, oneose() { subcloser.close(); } }); return subcloser; } async querySync(relays, filter, params) { return new Promise(async (resolve) => { const events = []; this.subscribeManyEose(relays, [filter], { ...params, onevent(event) { events.push(event); }, onclose(_) { resolve(events); } }); }); } async get(relays, filter, params) { filter.limit = 1; const events = await this.querySync(relays, filter, params); events.sort((a, b) => b.created_at - a.created_at); return events[0] || null; } publish(relays, event) { return relays.map(normalizeURL).map(async (url, i2, arr) => { if (arr.indexOf(url) !== i2) { return Promise.reject("duplicate url"); } let r = await this.ensureRelay(url); return r.publish(event); }); } }; var _WebSocket; try { _WebSocket = WebSocket; } catch { } var SimplePool = class extends AbstractSimplePool { constructor() { super({ verifyEvent, websocketImplementation: _WebSocket }); } }; // node_modules/nostr-tools/lib/esm/nip05.js var NIP05_REGEX = /^(?:([\w.+-]+)@)?([\w_-]+(\.[\w_-]+)+)$/; var _fetch; try { _fetch = fetch; } catch { } async function queryProfile(fullname) { const match = fullname.match(NIP05_REGEX); if (!match) return null; const [_, name = "_", domain] = match; try { const url = `https://${domain}/.well-known/nostr.json?name=${name}`; const res = await (await _fetch(url, { redirect: "error" })).json(); let pubkey = res.names[name]; return pubkey ? { pubkey, relays: res.relays?.[pubkey] } : null; } catch (_e) { return null; } } // metadata.ts var import_lru_cache = __toESM(require_lru_cache(), 1); var pool = window.nostrSharedPool || new SimplePool(); var metadataCache = window.nostrMetadataCache || new import_lru_cache.default(2e3); function fetchMetadata(pubkey, hints) { let metadata = metadataCache.get(pubkey); if (metadata) return metadata; const relays = ["wss://purplepag.es", "wss://user.kindpag.es", "wss://relay.nos.social"]; relays.push(...hints); let promise = new Promise( (resolve, reject) => pool.subscribeManyEose( relays, [ { kinds: [0], authors: [pubkey] } ], { onevent(evt) { try { resolve(JSON.parse(evt.content)); } catch (err) { } }, onclose: reject } ) ); metadataCache.set(pubkey, promise); return promise; } async function inputToPubkey(input) { try { const { type, data } = decode(input); if (type === "nprofile") { return [data.pubkey, data.relays || []]; } else if (type === "npub") { return [data, []]; } } catch (err) { if (input.match(/[0-9a-f]{64}/)) { return [input, []]; } else if (input.match(".")) { let res = await queryProfile(input); if (!res) return [void 0]; return [res.pubkey, res.relays || []]; } } return [void 0]; } // nostr-picture.ts var import_debounce = __toESM(require_debounce(), 1); // utils.ts var transparentPixel = ""; function handleImageError(ev) { const el = ev.target; console.log("error loading image", ev); if (el.src !== transparentPixel) { el.src = transparentPixel; } } // nostr-picture.ts var NostrPicture = class extends HTMLElement { img; constructor() { super(); this.img = document.createElement("img"); this.img.setAttribute("part", "img"); this.img.onerror = handleImageError; this.attachShadow({ mode: "open" }); const { shadowRoot } = this; shadowRoot.appendChild(this.img); } connectedCallback() { this.style.display = "inline-block"; this.style.width = "fit-content"; this.style.height = "fit-content"; this.set(); } attributeChangedCallback(name, _, value) { if (name === "pubkey") this.set(); else if (name === "width" || name === "height") this.img.setAttribute(name, value); } set = (0, import_debounce.default)(async () => { let input = this.getAttribute("pubkey"); if (input) { let [pubkey, hints] = await inputToPubkey(input); if (pubkey) { let metadata = await fetchMetadata(pubkey, hints || []); this.img.src = metadata.picture || transparentPixel; let name = metadata.name || metadata.display_name || npubEncode(pubkey); this.img.alt = `picture for "${name}"`; } } }, 200); }; __publicField(NostrPicture, "observedAttributes", ["pubkey", "width", "height"]); window.customElements.define("nostr-picture", NostrPicture); })();