POWR/docs/design_doc.md
2025-02-11 10:38:17 -05:00

231 lines
5.7 KiB
Markdown

# POWR Database Implementation PRD
## Problem Statement
POWR requires a robust SQLite database implementation that enables local-first fitness tracking while supporting future Nostr protocol integration. The database must efficiently handle exercise definitions (NIP-33401), workout templates (NIP-33402), and workout records (NIP-33403) while maintaining a clean separation between local storage needs and Nostr protocol compatibility.
## Requirements
### Functional Requirements
- Store and process exercise definitions with complete metadata
- Support workout template creation and management
- Track workout records and performance history
- Enable efficient content querying and filtering
- Handle both local and Nostr-sourced content seamlessly
- Support offline-first operations with sync capabilities
- Manage template dependencies and incomplete references
- Track exercise history and performance metrics
- Support batch operations and migrations
### Non-Functional Requirements
- Query response time < 100ms for common operations
- Support concurrent read/write operations safely
- Minimize memory usage through efficient caching
- Maintain data integrity across sync operations
- Scale to handle 1000+ exercises and 100+ templates
- Support incremental sync with Nostr relays
- Ensure consistent performance on mobile devices
- Support automated testing and validation
## Design Decisions
### 1. Storage Architecture
Use a dual storage approach with separate tables for raw events and processed data:
Rationale:
- Maintains perfect relay replication capability
- Enables efficient local querying
- Supports dependency tracking
- Facilitates future sync operations
- Allows for flexible schema evolution
### 2. Cache Management
Implement an LRU cache system with configurable limits:
Rationale:
- Improves read performance for common queries
- Manages memory usage effectively
- Supports write buffering for batch operations
- Provides tunable performance controls
### 3. Schema Design
Use a normalized schema with proper constraints and indexing:
Rationale:
- Ensures data integrity
- Enables efficient querying
- Supports future extensions
- Maintains clear relationships
## Technical Design
### Core Schema
```sql
-- Schema Version
CREATE TABLE schema_version (
version INTEGER PRIMARY KEY,
updated_at INTEGER NOT NULL
);
-- Raw Events
CREATE TABLE nostr_events (
id TEXT PRIMARY KEY,
kind INTEGER NOT NULL,
pubkey TEXT NOT NULL,
created_at INTEGER NOT NULL,
content TEXT,
raw_event TEXT NOT NULL,
source TEXT DEFAULT 'local'
);
-- Processed Exercises
CREATE TABLE exercise_definitions (
event_id TEXT PRIMARY KEY,
title TEXT NOT NULL,
type TEXT NOT NULL,
category TEXT NOT NULL,
equipment TEXT,
description TEXT,
format_json TEXT,
format_units_json TEXT,
FOREIGN KEY(event_id) REFERENCES nostr_events(id)
);
-- Templates
CREATE TABLE workout_templates (
event_id TEXT PRIMARY KEY,
title TEXT NOT NULL,
type TEXT NOT NULL,
category TEXT NOT NULL,
description TEXT,
rounds INTEGER,
duration INTEGER,
interval_time INTEGER,
rest_between_rounds INTEGER,
created_at INTEGER NOT NULL,
FOREIGN KEY(event_id) REFERENCES nostr_events(id)
);
```
### Core Components
```typescript
interface DbService {
// Core database operations
executeSql(sql: string, params?: any[]): Promise<SQLiteResult>;
withTransaction<T>(operation: () => Promise<T>): Promise<T>;
// Migration handling
getCurrentVersion(): Promise<number>;
migrate(targetVersion?: number): Promise<void>;
}
interface CacheManager {
// Cache configuration
maxExercises: number;
maxTemplates: number;
writeBufferSize: number;
// Cache operations
get<T>(key: string): Promise<T | undefined>;
set<T>(key: string, value: T): Promise<void>;
invalidate(key: string): Promise<void>;
}
```
## Implementation Plan
### Phase 1: Core Infrastructure (Week 1-2)
1. Set up base schema and migrations
2. Implement DbService class
3. Add basic CRUD operations
4. Create test infrastructure
### Phase 2: Cache Layer (Week 2-3)
1. Implement CacheManager
2. Add LRU caching
3. Configure write buffering
4. Add cache invalidation
### Phase 3: Query Layer (Week 3-4)
1. Build query builders
2. Implement common queries
3. Add search functionality
4. Optimize performance
### Phase 4: Nostr Integration (Week 4-5)
1. Add event processing
2. Implement sync logic
3. Handle dependencies
4. Add relay management
## Testing Strategy
### Unit Tests
- Schema creation and migrations
- CRUD operations for all entities
- Cache operations and invalidation
- Query builder functions
### Integration Tests
- End-to-end workflow testing
- Template dependency handling
- Sync operations
- Performance benchmarks
### Performance Tests
- Query response times
- Cache hit rates
- Write operation latency
- Memory usage patterns
## Observability
### Logging
- Schema migrations
- Cache operations
- Query performance
- Error conditions
### Metrics
- Query response times
- Cache hit/miss rates
- Database size
- Operation counts
## Future Considerations
### Potential Enhancements
- Advanced caching strategies
- Full-text search
- Data compression
- Cloud backup options
### Known Limitations
- SQLite concurrent access
- Initial sync performance
- Cache memory constraints
- Platform-specific issues
## Dependencies
### Runtime Dependencies
- expo-sqlite
- @react-native-async-storage/async-storage
- NDK (future)
### Development Dependencies
- Jest
- TypeScript
- SQLite development tools
## Security Considerations
- Input validation
- Query parameterization
- Event signature verification
- Access control
## References
- NDK SQLite Implementation
- Nostr NIP-01 Specification
- POWR Exercise NIP Draft
- React Native SQLite Documentation